Rotor Fault Detection in Squirrel Cage Induction Motors using MCSA and DWT Techniques

N. Bessous, S. Sbaa, R. Pusca, R. Romary
{"title":"Rotor Fault Detection in Squirrel Cage Induction Motors using MCSA and DWT Techniques","authors":"N. Bessous, S. Sbaa, R. Pusca, R. Romary","doi":"10.51485/AJSS.V6I1.7","DOIUrl":null,"url":null,"abstract":"This article presents the fault detection of broken rotor bar (BRB) faults in squirrel cage induction motors (SCIMs). This work applied two diagnostic methods on stator current signal. It is necessary to verify the machine health to avoid any catastrophic damage. The first method uses the fast Fourier transform (FFT) which is generally called motor current signature analysis (MCSA). We carefully verified the spectral content of the stator current to detect BRB fault. The new harmonics allows us to take a good decision about BRB fault. The second method is based on the discrete wavelet transform (DWT). This technique is widely used in the diagnosis field of rotating machinery. According to DWT method, we used the mean square error (MSE) as a good indicator. An experimental test with different conditions of the induction motor has been performed. The experimental results have been exploited using MCSA and DWT methods to achieve a good decision.","PeriodicalId":153848,"journal":{"name":"Algerian Journal of Signals and Systems","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Algerian Journal of Signals and Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.51485/AJSS.V6I1.7","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This article presents the fault detection of broken rotor bar (BRB) faults in squirrel cage induction motors (SCIMs). This work applied two diagnostic methods on stator current signal. It is necessary to verify the machine health to avoid any catastrophic damage. The first method uses the fast Fourier transform (FFT) which is generally called motor current signature analysis (MCSA). We carefully verified the spectral content of the stator current to detect BRB fault. The new harmonics allows us to take a good decision about BRB fault. The second method is based on the discrete wavelet transform (DWT). This technique is widely used in the diagnosis field of rotating machinery. According to DWT method, we used the mean square error (MSE) as a good indicator. An experimental test with different conditions of the induction motor has been performed. The experimental results have been exploited using MCSA and DWT methods to achieve a good decision.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于MCSA和DWT技术的鼠笼式异步电动机转子故障检测
介绍了鼠笼式异步电动机转子断条故障的故障检测方法。本文采用两种方法对定子电流信号进行诊断。有必要验证机器的健康状况,以避免任何灾难性的损坏。第一种方法使用快速傅里叶变换(FFT),通常称为电机电流特征分析(MCSA)。我们仔细验证了定子电流的频谱含量,以检测BRB故障。新谐波可以帮助我们更好地判断BRB故障。第二种方法基于离散小波变换(DWT)。该技术广泛应用于旋转机械的诊断领域。根据DWT方法,我们使用均方误差(MSE)作为一个很好的指标。对异步电动机进行了不同工况下的实验测试。利用MCSA和DWT方法对实验结果进行了比较,取得了较好的决策效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Energy Management System in Smart Micro-Grid Impact of Voltage Temperature Coefficient on power prediction of four type silicon photovoltaic module technologies installed in real conditions in the north-central of Algeria PD adaptive controller method for a three-axis stabilized rigid satellite attitude system DFIG Wind Turbine Controlled by Sliding Mode and Fuzzy-Sliding Control Modes Design and simulation of Demodulator Based BELL-202 standard for NanoSatellite Communication Sub-system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1