Recovery of corrupted low-rank matrices via half-quadratic based nonconvex minimization

R. He, Zhenan Sun, T. Tan, Weishi Zheng
{"title":"Recovery of corrupted low-rank matrices via half-quadratic based nonconvex minimization","authors":"R. He, Zhenan Sun, T. Tan, Weishi Zheng","doi":"10.1109/CVPR.2011.5995328","DOIUrl":null,"url":null,"abstract":"Recovering arbitrarily corrupted low-rank matrices arises in computer vision applications, including bioinformatic data analysis and visual tracking. The methods used involve minimizing a combination of nuclear norm and l1 norm. We show that by replacing the l1 norm on error items with nonconvex M-estimators, exact recovery of densely corrupted low-rank matrices is possible. The robustness of the proposed method is guaranteed by the M-estimator theory. The multiplicative form of half-quadratic optimization is used to simplify the nonconvex optimization problem so that it can be efficiently solved by iterative regularization scheme. Simulation results corroborate our claims and demonstrate the efficiency of our proposed method under tough conditions.","PeriodicalId":445398,"journal":{"name":"CVPR 2011","volume":"13 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"48","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CVPR 2011","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2011.5995328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 48

Abstract

Recovering arbitrarily corrupted low-rank matrices arises in computer vision applications, including bioinformatic data analysis and visual tracking. The methods used involve minimizing a combination of nuclear norm and l1 norm. We show that by replacing the l1 norm on error items with nonconvex M-estimators, exact recovery of densely corrupted low-rank matrices is possible. The robustness of the proposed method is guaranteed by the M-estimator theory. The multiplicative form of half-quadratic optimization is used to simplify the nonconvex optimization problem so that it can be efficiently solved by iterative regularization scheme. Simulation results corroborate our claims and demonstrate the efficiency of our proposed method under tough conditions.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用半二次基非凸最小化法恢复损坏的低秩矩阵
恢复任意损坏的低秩矩阵出现在计算机视觉应用中,包括生物信息学数据分析和视觉跟踪。所使用的方法包括最小化核范数和l1范数的组合。我们证明,通过用非凸m估计量代替错误项上的l1范数,可以精确恢复密集损坏的低秩矩阵。m估计量理论保证了该方法的鲁棒性。利用半二次优化的乘法形式对非凸优化问题进行了简化,使其可以通过迭代正则化方案有效地求解。仿真结果证实了我们的说法,并证明了我们所提出的方法在恶劣条件下的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Linearity of each channel pixel values from a surface in and out of shadows and its applications Continuously tracking and see-through occlusion based on a new hybrid synthetic aperture imaging model Learning a blind measure of perceptual image quality Joint segmentation and classification of human actions in video Probabilistic simultaneous pose and non-rigid shape recovery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1