{"title":"An approach to inverse fuzzy arithmetic","authors":"M. Hanss","doi":"10.1109/NAFIPS.2003.1226831","DOIUrl":null,"url":null,"abstract":"A novel approach of inverse fuzzy arithmetic is introduced to successfully identify the uncertain parameters of linear and nonlinear models on the basis of uncertain values for the output variables of the model. The presented method is based on the transformation method, which has been proposed as a powerful tool for the simulation and analysis of systems with uncertain model parameters. A general scheme for the practical implementation of the inverse fuzzy-arithmetical approach is given, and the effectiveness of the method is shown for two examples, which consist of a linear model and a nonlinear model, respectively.","PeriodicalId":153530,"journal":{"name":"22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd International Conference of the North American Fuzzy Information Processing Society, NAFIPS 2003","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NAFIPS.2003.1226831","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

A novel approach of inverse fuzzy arithmetic is introduced to successfully identify the uncertain parameters of linear and nonlinear models on the basis of uncertain values for the output variables of the model. The presented method is based on the transformation method, which has been proposed as a powerful tool for the simulation and analysis of systems with uncertain model parameters. A general scheme for the practical implementation of the inverse fuzzy-arithmetical approach is given, and the effectiveness of the method is shown for two examples, which consist of a linear model and a nonlinear model, respectively.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
模糊逆算法的一种方法
基于模型输出变量的不确定值,提出了一种新的模糊逆算法来识别线性和非线性模型的不确定参数。该方法是在变换方法的基础上提出的,变换方法是模型参数不确定系统仿真和分析的有力工具。给出了模糊逆算法在实际应用中的一般方案,并通过分别包含线性模型和非线性模型的两个算例说明了该方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fuzzy-rough nearest-neighbor classification approach Fault detection and diagnosis in turbine engines using fuzzy logic How the number of measured dimensions affects fuzzy causal measures of vitamin therapy for hyperhomocysteinemia in stroke patients The fuzzy rough approximation decomposability Fuzzy-neuro system for bridge health monitoring
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1