NUMFL: Localizing Faults in Numerical Software Using a Value-Based Causal Model

Zhuofu Bai, Gang Shu, Andy Podgurski
{"title":"NUMFL: Localizing Faults in Numerical Software Using a Value-Based Causal Model","authors":"Zhuofu Bai, Gang Shu, Andy Podgurski","doi":"10.1109/ICST.2015.7102597","DOIUrl":null,"url":null,"abstract":"We present NUMFL, a value-based causal inference model for localizing faults in numerical software. NUMFL combines causal and statistical analyses to characterize the causal effects of individual numerical expressions on failures. Given value-profiles for an expression's variables, NUMFL uses generalized propensity scores (GPSs) to reduce confounding bias caused by evaluation of other, faulty expressions. It estimates the average failure-causing effect of an expression using quadratic regression models fit within GPS subclasses. We report on an evaluation of NUMFL with components from four Java numerical libraries, in which it was compared to five alternative statistical fault localization metrics. The results indicate that NUMFL is the most effective technique overall.","PeriodicalId":401414,"journal":{"name":"2015 IEEE 8th International Conference on Software Testing, Verification and Validation (ICST)","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE 8th International Conference on Software Testing, Verification and Validation (ICST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICST.2015.7102597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

We present NUMFL, a value-based causal inference model for localizing faults in numerical software. NUMFL combines causal and statistical analyses to characterize the causal effects of individual numerical expressions on failures. Given value-profiles for an expression's variables, NUMFL uses generalized propensity scores (GPSs) to reduce confounding bias caused by evaluation of other, faulty expressions. It estimates the average failure-causing effect of an expression using quadratic regression models fit within GPS subclasses. We report on an evaluation of NUMFL with components from four Java numerical libraries, in which it was compared to five alternative statistical fault localization metrics. The results indicate that NUMFL is the most effective technique overall.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用基于值的因果模型在数值软件中定位故障
提出了一种基于数值的故障定位因果推理模型NUMFL。NUMFL结合因果和统计分析,以表征个别数值表达式对故障的因果效应。给定表达式变量的值概况,NUMFL使用广义倾向评分(gps)来减少由评估其他错误表达式引起的混淆偏差。它使用GPS子类内拟合的二次回归模型估计表达式的平均失效导致效应。我们报告了用四个Java数字库的组件对NUMFL的评估,其中将其与五个可选的统计故障定位度量进行了比较。结果表明,NUMFL是最有效的技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
QuickChecking Static Analysis Properties A Case Study on the Efficiency of Model-Based Testing at the European Space Agency Supporting the Transition to an Agile Test Matrix Behind an Application Firewall, Are We Safe from SQL Injection Attacks? Show Me New Counterexamples: A Path-Based Approach
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1