Image classification system based on cortical representations and unsupervised neural network learning

Nicolai Petkov
{"title":"Image classification system based on cortical representations and unsupervised neural network learning","authors":"Nicolai Petkov","doi":"10.1109/CAMP.1995.521068","DOIUrl":null,"url":null,"abstract":"A preprocessor based on a computational model of simple cells in the mammalian primary visual cortex is combined with a self-organising artificial neural network classifier. After learning with a sequence of input images, the output units of the system turn out to correspond to classes of input images and this correspondence follows closely human perception. In particular, groups of output units which are selective for images of human faces emerge. In this respect the output units mimic the behaviour of face selective cells that have been found in the inferior temporal cortex of primates. The system is capable of memorising image patterns, building autonomously its own internal representations, and correctly classifying new patterns without using any a priori model of the visual world.","PeriodicalId":277209,"journal":{"name":"Proceedings of Conference on Computer Architectures for Machine Perception","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1995-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of Conference on Computer Architectures for Machine Perception","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CAMP.1995.521068","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

A preprocessor based on a computational model of simple cells in the mammalian primary visual cortex is combined with a self-organising artificial neural network classifier. After learning with a sequence of input images, the output units of the system turn out to correspond to classes of input images and this correspondence follows closely human perception. In particular, groups of output units which are selective for images of human faces emerge. In this respect the output units mimic the behaviour of face selective cells that have been found in the inferior temporal cortex of primates. The system is capable of memorising image patterns, building autonomously its own internal representations, and correctly classifying new patterns without using any a priori model of the visual world.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于皮质表征和无监督神经网络学习的图像分类系统
基于哺乳动物初级视觉皮层简单细胞计算模型的预处理器与自组织人工神经网络分类器相结合。在对一系列输入图像进行学习后,系统的输出单元与输入图像的类别相对应,这种对应关系与人类的感知密切相关。特别是,出现了对人脸图像有选择性的输出单元组。在这方面,输出单元模仿了在灵长类动物的下颞叶皮层中发现的面部选择细胞的行为。该系统能够记忆图像模式,自主构建自己的内部表征,并在不使用任何视觉世界的先验模型的情况下正确分类新模式。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Object parts matching using Hopfield neural networks Systolic cellular logic: architecture and performance evaluation Hierarchical and modular attention Parallelizable asychronous by blocks algorithms for neural computing Solving the shape-from-shading problem on the CM-5
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1