Frameless registration of MR and CT 3D volumetric data sets

Rakesh Kumar, Kristin J. Dana, P. Anandan, Neil E. Okamoto, J. Bergen, P. Hemler, T. Sumanaweera, P. Elsen, J. Adler
{"title":"Frameless registration of MR and CT 3D volumetric data sets","authors":"Rakesh Kumar, Kristin J. Dana, P. Anandan, Neil E. Okamoto, J. Bergen, P. Hemler, T. Sumanaweera, P. Elsen, J. Adler","doi":"10.1109/ACV.1994.341316","DOIUrl":null,"url":null,"abstract":"In this paper we present techniques for frameless registration of 3D Magnetic Resonance (MR) and Computed Tomography (CT) volumetric data of the head and spine. We present techniques for estimating a 3D affine or rigid transform which can be used to resample the CT (or MR) data to align with the MR (or CT) data. Our technique transforms the MR and CT data sets with spatial filters so they can be directly matched. The matching is done by a direct optimization technique using a gradient based descent approach and a coarse-to-fine control strategy over a 4D pyramid. We present results on registering the head and spine data by matching 3D edges and results on registering cranial ventricle data by matching images filtered by a Laplacian of a Gaussian.<<ETX>>","PeriodicalId":437089,"journal":{"name":"Proceedings of 1994 IEEE Workshop on Applications of Computer Vision","volume":"72 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE Workshop on Applications of Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACV.1994.341316","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

Abstract

In this paper we present techniques for frameless registration of 3D Magnetic Resonance (MR) and Computed Tomography (CT) volumetric data of the head and spine. We present techniques for estimating a 3D affine or rigid transform which can be used to resample the CT (or MR) data to align with the MR (or CT) data. Our technique transforms the MR and CT data sets with spatial filters so they can be directly matched. The matching is done by a direct optimization technique using a gradient based descent approach and a coarse-to-fine control strategy over a 4D pyramid. We present results on registering the head and spine data by matching 3D edges and results on registering cranial ventricle data by matching images filtered by a Laplacian of a Gaussian.<>
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MR和CT三维体积数据集的无框配准
在本文中,我们提出了头部和脊柱的三维磁共振(MR)和计算机断层扫描(CT)体积数据的无帧配准技术。我们提出了估计3D仿射或刚性变换的技术,可用于重新采样CT(或MR)数据以与MR(或CT)数据对齐。我们的技术用空间滤波器对MR和CT数据集进行变换,使它们可以直接匹配。匹配是通过使用基于梯度的下降方法和在4D金字塔上的粗到精控制策略的直接优化技术完成的。我们给出了通过匹配三维边缘来匹配头部和脊柱数据的结果,以及通过匹配高斯拉普拉斯算子过滤的图像来匹配脑室数据的结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Recursive identification of gesture inputs using hidden Markov models Modelling issues in vision based aircraft navigation during landing Model supported exploitation: quick look, detection and counting, and change detection Binocular gaze holding of a moving object with the active stereo vision system A unified recognition and stereo vision system for size assessment of fish
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1