A. Belova, Y. Davydenko, D. Gurevich, A. Bashkeev, S. Bukhalov, P. Veeken
{"title":"Mineral Prospecting for Copper-Molybdene Ores in Northern Kazakhstan Using Electromagnetic Sensing and Induced Polarization Technology (EMS-IP)","authors":"A. Belova, Y. Davydenko, D. Gurevich, A. Bashkeev, S. Bukhalov, P. Veeken","doi":"10.3997/2214-4609.202010238","DOIUrl":null,"url":null,"abstract":"Summary Geoelectric techniques are applied to identify geobodies in the shallow subsurface (<1km) that correspond to commercial ore deposits (copper-molybdene) in Kazakhstan. A combined CSEM and Induced Polarisation method is chosen to delineate anomalies in the underground. Resistivity and polarisation effects prove diagnostic. The workflow comprises steps like: EM acquisition, quality control and data preconditioning, inversion, interpretation and Principle Component Analysis. Inversion processing is done via a finite elements method solving the Cole-Cole formula simulating Maxwell’s equations. 1D inversion results serve as input for the 3D inversion. Principle Component Analysis (n-dimensional clustering and distance weighting) and computation of composite geoelectric parameters enhance the discrimination power. EM anomalies are circular (hydrothermal injection feature) and/or elongate in shape. Fracture zones and faults provide conduits/barriers and govern hydrothermal processes. Faulting in part controls the outline of the segmented IP anomalies. Three shallow well locations were proposed based on the EMS-IP data. Two of these boreholes demonstrate elevated polarisation phenomena: copper-molybdene metal ore in MN17 and pyrite enrichment in MN16. The mapped geobodies based on EM anomalies give complementary information on volume and distribution of the mineral resources. EMS-IP is a cost-effective investigation tool that deserves more attention in geoscience projects.","PeriodicalId":265130,"journal":{"name":"82nd EAGE Annual Conference & Exhibition","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-10-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"82nd EAGE Annual Conference & Exhibition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3997/2214-4609.202010238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Summary Geoelectric techniques are applied to identify geobodies in the shallow subsurface (<1km) that correspond to commercial ore deposits (copper-molybdene) in Kazakhstan. A combined CSEM and Induced Polarisation method is chosen to delineate anomalies in the underground. Resistivity and polarisation effects prove diagnostic. The workflow comprises steps like: EM acquisition, quality control and data preconditioning, inversion, interpretation and Principle Component Analysis. Inversion processing is done via a finite elements method solving the Cole-Cole formula simulating Maxwell’s equations. 1D inversion results serve as input for the 3D inversion. Principle Component Analysis (n-dimensional clustering and distance weighting) and computation of composite geoelectric parameters enhance the discrimination power. EM anomalies are circular (hydrothermal injection feature) and/or elongate in shape. Fracture zones and faults provide conduits/barriers and govern hydrothermal processes. Faulting in part controls the outline of the segmented IP anomalies. Three shallow well locations were proposed based on the EMS-IP data. Two of these boreholes demonstrate elevated polarisation phenomena: copper-molybdene metal ore in MN17 and pyrite enrichment in MN16. The mapped geobodies based on EM anomalies give complementary information on volume and distribution of the mineral resources. EMS-IP is a cost-effective investigation tool that deserves more attention in geoscience projects.