{"title":"Unifying Density-Based Clustering and Outlier Detection","authors":"Yunxin Tao, D. Pi","doi":"10.1109/WKDD.2009.127","DOIUrl":null,"url":null,"abstract":"Density-based clustering and density-based outlier detection have been extensively studied in the data mining. However, Existing works address density-based clustering or density-based outlier detection solely. But for many scenarios, it is more meaningful to unify density-based clustering and outlier detection when both the clustering and outlier detection results are needed simultaneously. In this paper, a novel algorithm named DBCOD that unifies density-based clustering and outlier detection is proposed. In order to discover density-based clusters and assign to each outlier a degree of being an outlier, a novel concept called neighborhood-based local density factor (NLDF) is employed. The experimental results on different shape, large-scale, and high-dimensional databases demonstrate the effectiveness and efficiency of our method.","PeriodicalId":143250,"journal":{"name":"2009 Second International Workshop on Knowledge Discovery and Data Mining","volume":"48 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Second International Workshop on Knowledge Discovery and Data Mining","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WKDD.2009.127","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19
Abstract
Density-based clustering and density-based outlier detection have been extensively studied in the data mining. However, Existing works address density-based clustering or density-based outlier detection solely. But for many scenarios, it is more meaningful to unify density-based clustering and outlier detection when both the clustering and outlier detection results are needed simultaneously. In this paper, a novel algorithm named DBCOD that unifies density-based clustering and outlier detection is proposed. In order to discover density-based clusters and assign to each outlier a degree of being an outlier, a novel concept called neighborhood-based local density factor (NLDF) is employed. The experimental results on different shape, large-scale, and high-dimensional databases demonstrate the effectiveness and efficiency of our method.