Parallelizing Information Set Generation for Game Tree Search Applications

M. Richards, Abhishek K. Gupta, O. Sarood, L. Kalé
{"title":"Parallelizing Information Set Generation for Game Tree Search Applications","authors":"M. Richards, Abhishek K. Gupta, O. Sarood, L. Kalé","doi":"10.1109/SBAC-PAD.2012.42","DOIUrl":null,"url":null,"abstract":"Information Set Generation (ISG) is the identification of the set of paths in an imperfect information game tree that are consistent with a player's observations. The ability to reason about the possible a history is critical to the performance of game-playing agents. ISG represents a class of combinatorial search problems which is computationally intensive but challenging to efficiently parallelize. In this paper, we address the parallelization of information set generation in the context of Kriegspiel (partially observable chess). We implement the algorithm on top of a general purpose combinatorial search engine and discuss its performance using datasets from real game instances in addition to benchmarks. Further, we demonstrate the effect of load balancing strategies, problem sizes and computational granularity (grain size parameters) on performance. We achieve speedups of over 500 on 1,024 processors, far exceeding previous scalability results for game tree search applications.","PeriodicalId":232444,"journal":{"name":"2012 IEEE 24th International Symposium on Computer Architecture and High Performance Computing","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 24th International Symposium on Computer Architecture and High Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SBAC-PAD.2012.42","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Information Set Generation (ISG) is the identification of the set of paths in an imperfect information game tree that are consistent with a player's observations. The ability to reason about the possible a history is critical to the performance of game-playing agents. ISG represents a class of combinatorial search problems which is computationally intensive but challenging to efficiently parallelize. In this paper, we address the parallelization of information set generation in the context of Kriegspiel (partially observable chess). We implement the algorithm on top of a general purpose combinatorial search engine and discuss its performance using datasets from real game instances in addition to benchmarks. Further, we demonstrate the effect of load balancing strategies, problem sizes and computational granularity (grain size parameters) on performance. We achieve speedups of over 500 on 1,024 processors, far exceeding previous scalability results for game tree search applications.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
游戏树搜索应用的并行信息集生成
信息集生成(ISG)是识别不完全信息博弈树中与玩家观察一致的路径集。推理可能历史的能力对游戏代理的表现至关重要。ISG是一类计算量大但难于高效并行化的组合搜索问题。在本文中,我们解决了Kriegspiel(部分可观察象棋)背景下信息集生成的并行化问题。我们在一个通用的组合搜索引擎上实现了这个算法,并使用来自真实游戏实例的数据集和基准测试来讨论它的性能。此外,我们还展示了负载平衡策略、问题大小和计算粒度(粒度参数)对性能的影响。我们在1024个处理器上实现了超过500的加速,远远超过了之前游戏树搜索应用程序的可扩展性结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Using Heterogeneous Networks to Improve Energy Efficiency in Direct Coherence Protocols for Many-Core CMPs Cloud Workload Analysis with SWAT Energy-Performance Tradeoffs in Software Transactional Memory CSHARP: Coherence and SHaring Aware Cache Replacement Policies for Parallel Applications Exploiting Concurrent GPU Operations for Efficient Work Stealing on Multi-GPUs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1