On Consolidated Predictive Model of the Natural History of Breast Cancer: Primary Tumor and Secondary Metastases in Patients with Lymph Nodes Metastases

E. Tyuryumina, A. Neznanov
{"title":"On Consolidated Predictive Model of the Natural History of Breast Cancer: Primary Tumor and Secondary Metastases in Patients with Lymph Nodes Metastases","authors":"E. Tyuryumina, A. Neznanov","doi":"10.1145/3079452.3079461","DOIUrl":null,"url":null,"abstract":"This paper is devoted to mathematical modelling of the progression and stages of breast cancer. The \"Consolidated mathematical growth Model of primary tumor (PT) and secondary distant metastases (MTS) in patients with lymph nodes MTS (Stage III)\" (CoM-III) is proposed as a new research tool. The CoM-III rests on an exponential tumor growth model and consists of a system of determinate nonlinear and linear equations. The CoM-III describes correctly primary tumor growth (parameter T) and distant metastases growth (parameter M, parameter N). The CoM-III model and predictive software: a) detect different growth periods of primary tumor and distant metastases in patients with lymph nodes MTS; b) make forecast of the period of the distant metastases appearance in patients with lymph nodes MTS; c) have higher average prediction accuracy than the other tools; d) can improve forecasts on survival of breast cancer and facilitate optimisation of diagnostic tests. The CoM-III enables us, for the first time, to predict the it whole natural history of PT and secondary distant MTS growth of patients with/without lymph nodes MTS on each stage relying only on PT sizes.","PeriodicalId":245682,"journal":{"name":"Proceedings of the 2017 International Conference on Digital Health","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 International Conference on Digital Health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3079452.3079461","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

This paper is devoted to mathematical modelling of the progression and stages of breast cancer. The "Consolidated mathematical growth Model of primary tumor (PT) and secondary distant metastases (MTS) in patients with lymph nodes MTS (Stage III)" (CoM-III) is proposed as a new research tool. The CoM-III rests on an exponential tumor growth model and consists of a system of determinate nonlinear and linear equations. The CoM-III describes correctly primary tumor growth (parameter T) and distant metastases growth (parameter M, parameter N). The CoM-III model and predictive software: a) detect different growth periods of primary tumor and distant metastases in patients with lymph nodes MTS; b) make forecast of the period of the distant metastases appearance in patients with lymph nodes MTS; c) have higher average prediction accuracy than the other tools; d) can improve forecasts on survival of breast cancer and facilitate optimisation of diagnostic tests. The CoM-III enables us, for the first time, to predict the it whole natural history of PT and secondary distant MTS growth of patients with/without lymph nodes MTS on each stage relying only on PT sizes.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
乳腺癌自然史的综合预测模型:淋巴结转移患者的原发肿瘤和继发转移
本文致力于建立乳腺癌进展和分期的数学模型。“淋巴结MTS (III期)患者原发性肿瘤(PT)和继发性远处转移(MTS)的综合数学生长模型”(CoM-III)是一种新的研究工具。CoM-III基于指数肿瘤生长模型,由确定的非线性和线性方程组组成。CoM-III模型正确描述了原发肿瘤生长(参数T)和远处转移瘤生长(参数M、参数N)。CoM-III模型及预测软件:a)检测淋巴结MTS患者原发肿瘤和远处转移瘤的不同生长时期;b)预测淋巴结MTS患者远处转移出现的时间;C)平均预测精度高于其他工具;D)可以改善对乳腺癌生存的预测,并促进诊断测试的优化。CoM-III使我们第一次能够仅依靠淋巴结大小预测每个阶段有/无淋巴结MTS患者的PT和继发远处MTS生长的完整自然史。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extracting Gene-Disease Relations from Text to Support Biomarker Discovery Towards Health (Aware) Recommender Systems A Regularization Approach for Identifying Cumulative Lagged Effects in Smart Health Applications FitBit Garden: A Mobile Game Designed to Increase Physical Activity in Children Health Misinformation in Search and Social Media
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1