Extracting coherent emotion elicited segments from physiological signals

Chi-Keng Wu, P. Chung, Chih-Jen Wang
{"title":"Extracting coherent emotion elicited segments from physiological signals","authors":"Chi-Keng Wu, P. Chung, Chih-Jen Wang","doi":"10.1109/WACI.2011.5953149","DOIUrl":null,"url":null,"abstract":"The feasibility of real life affective detection using physiological signals is usually limited by biosensor noise and artifact. This is challenging in extracting the representative emotion features. In this paper a quasi-homogeneous segmentation algorithm based on Top-Down homogeneous splitting and Bottom-Up Merging using Bhattacharyya distance is proposed to partition the signal and remove artifacts. Furthermore, since physiological responses may also vary within one emotion elicited period, features extracted from segmented segments can better describe recent physiological patterns. In this paper a constraint-based clustering analysis based on estimating best seed of K-means is developed to discover representative emotion-elicited segments at all cross subject partitions which include labeled and unlabelled feature vectors.","PeriodicalId":319764,"journal":{"name":"2011 IEEE Workshop on Affective Computational Intelligence (WACI)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Workshop on Affective Computational Intelligence (WACI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WACI.2011.5953149","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The feasibility of real life affective detection using physiological signals is usually limited by biosensor noise and artifact. This is challenging in extracting the representative emotion features. In this paper a quasi-homogeneous segmentation algorithm based on Top-Down homogeneous splitting and Bottom-Up Merging using Bhattacharyya distance is proposed to partition the signal and remove artifacts. Furthermore, since physiological responses may also vary within one emotion elicited period, features extracted from segmented segments can better describe recent physiological patterns. In this paper a constraint-based clustering analysis based on estimating best seed of K-means is developed to discover representative emotion-elicited segments at all cross subject partitions which include labeled and unlabelled feature vectors.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
从生理信号中提取连贯的情感诱发片段
现实生活中利用生理信号进行情感检测的可行性通常受到生物传感器噪声和伪影的限制。这对提取具有代表性的情感特征具有挑战性。本文提出了一种基于自顶向下齐次分割和自底向上融合的准齐次分割算法,利用Bhattacharyya距离对信号进行分割并去除伪影。此外,由于生理反应也可能在一个情绪引发的时期内发生变化,从分段段中提取的特征可以更好地描述最近的生理模式。本文提出了一种基于K-means最佳种子估计的约束聚类分析方法,用于发现包含标记和未标记特征向量的所有跨主题分区上具有代表性的情感引发段。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An ontology-based affective tutoring system on digital arts Emotional correlates of information retrieval behaviors Evaluating facial displays of emotion for the android robot Geminoid F Facial electromyography (fEMG) activities in response to affective visual stimulation Mechanism, modulation, and expression of empathy in a virtual human
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1