Optimal neyman-pearson classification under Bayesian uncertainty models

Lori A. Dalton
{"title":"Optimal neyman-pearson classification under Bayesian uncertainty models","authors":"Lori A. Dalton","doi":"10.1109/GENSIPS.2013.6735943","DOIUrl":null,"url":null,"abstract":"A Bayesian modeling framework over an uncertainty class of underlying distributions has been used to derive an optimal MMSE error estimator for arbitrary classifiers and an optimal Bayesian classification rule that minimizes expected error, both relative to the overall misclassification rate. In this work, we use the same Bayesian framework to formulate a Neyman-Pearson based approach that optimizes relative to true and false positive rates. True and false positive rates are often of more practical use than the misclassification rate in medical applications, meanwhile the Neyman-Pearson theory does not require modeling or knowledge of the prior class probabilities.","PeriodicalId":336511,"journal":{"name":"2013 IEEE International Workshop on Genomic Signal Processing and Statistics","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Workshop on Genomic Signal Processing and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GENSIPS.2013.6735943","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

A Bayesian modeling framework over an uncertainty class of underlying distributions has been used to derive an optimal MMSE error estimator for arbitrary classifiers and an optimal Bayesian classification rule that minimizes expected error, both relative to the overall misclassification rate. In this work, we use the same Bayesian framework to formulate a Neyman-Pearson based approach that optimizes relative to true and false positive rates. True and false positive rates are often of more practical use than the misclassification rate in medical applications, meanwhile the Neyman-Pearson theory does not require modeling or knowledge of the prior class probabilities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
贝叶斯不确定性模型下的最优neyman-pearson分类
基于底层分布的不确定性类的贝叶斯建模框架已被用于导出任意分类器的最佳MMSE误差估计器和最小化预期误差的最佳贝叶斯分类规则,两者都相对于总体误分类率。在这项工作中,我们使用相同的贝叶斯框架来制定基于内曼-皮尔逊的方法,该方法相对于真阳性率和假阳性率进行了优化。在医学应用中,真阳性率和假阳性率往往比误分类率更有实际用途,同时,内曼-皮尔逊理论不需要建模或了解先验类概率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Compromised intervention policies for phenotype alteration SeqBBS: A change-point model based algorithm and R package for searching CNV regions via the ratio of sequencing reads Optimal Bayesian MMSE estimation of the coefficient of determination for discrete prediction Boolean model to experimental validation: A preliminary attempt Inference of genetic regulatory networks with unknown covariance structure
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1