Chinese community topic classification method based on graph model

Shuang Zhang, Xi Wang, Rencheng Sun, He Gao
{"title":"Chinese community topic classification method based on graph model","authors":"Shuang Zhang, Xi Wang, Rencheng Sun, He Gao","doi":"10.1117/12.2660992","DOIUrl":null,"url":null,"abstract":"Community topic classification is the basis of hot topic discovery. Existing graph models ignore the importance of key information to the text when performing text classification and increase the influence of irrelevant data. To address these problems, we propose a community topic classification model DGAT that incorporates key information as well as information about the topic itself. An integrated algorithm is proposed to extract keywords to avoid the problem of inaccurate keyword extraction. Then a composite complex network model containing both topic and keyword nodes is built. Finally, the graph attention mechanism is used to update node features and incorporate semantic-level attention to learn the effect of different graph structures on the current node classification. An example validation on the Qingdao community topic dataset proves the effectiveness of the method and outperforms the baseline models.","PeriodicalId":220312,"journal":{"name":"International Symposium on Computer Engineering and Intelligent Communications","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Symposium on Computer Engineering and Intelligent Communications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2660992","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Community topic classification is the basis of hot topic discovery. Existing graph models ignore the importance of key information to the text when performing text classification and increase the influence of irrelevant data. To address these problems, we propose a community topic classification model DGAT that incorporates key information as well as information about the topic itself. An integrated algorithm is proposed to extract keywords to avoid the problem of inaccurate keyword extraction. Then a composite complex network model containing both topic and keyword nodes is built. Finally, the graph attention mechanism is used to update node features and incorporate semantic-level attention to learn the effect of different graph structures on the current node classification. An example validation on the Qingdao community topic dataset proves the effectiveness of the method and outperforms the baseline models.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于图模型的中文社区话题分类方法
社区话题分类是热点话题发现的基础。现有的图模型在进行文本分类时忽略了关键信息对文本的重要性,增加了不相关数据的影响。为了解决这些问题,我们提出了一个包含关键信息和主题本身信息的社区主题分类模型DGAT。为了避免关键词提取不准确的问题,提出了一种集成的关键词提取算法。然后建立了包含主题节点和关键字节点的复合复杂网络模型。最后,利用图注意机制更新节点特征,结合语义级注意,学习不同图结构对当前节点分类的影响。通过对青岛市社区主题数据集的实例验证,证明了该方法的有效性,并优于基线模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A CRCLA task partition algorithm based on ant colony algorithm Surface defect detection for capsule based on improved YOLOv3 algorithm DQN based joint computing offloading and resource allocation for network slicing in F-RAN Analysis on AES encryption standard and safety Design of power domain non-orthogonal demodulation based on OFDM system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1