Resolution of the Probabilistic Vector Machine Problem via Single Linear Program

Mihai Cimpoesu, Andrei Sucila, H. Luchian
{"title":"Resolution of the Probabilistic Vector Machine Problem via Single Linear Program","authors":"Mihai Cimpoesu, Andrei Sucila, H. Luchian","doi":"10.1109/SYNASC.2013.78","DOIUrl":null,"url":null,"abstract":"This paper presents a significantly improved version to a recently introduced hyperplane classifier, Probabilistic Vector Machine (PVM). The main goal is to provide a formulation which allows fast and robust resolution of the classification problem as approached by the PVM algorithm. The main result is the introduction of a single linear program (LP) form which avoids the iterative process initially introduced by PVM. This allows comparison to state of the art algorithms such as Least Squares Twin Support Vector Machines(LSTSVM) and Robust Twin Support Vector Machines (R-TSVM). The results prove that PVM is both highly competitive and stable.","PeriodicalId":293085,"journal":{"name":"2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 15th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SYNASC.2013.78","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a significantly improved version to a recently introduced hyperplane classifier, Probabilistic Vector Machine (PVM). The main goal is to provide a formulation which allows fast and robust resolution of the classification problem as approached by the PVM algorithm. The main result is the introduction of a single linear program (LP) form which avoids the iterative process initially introduced by PVM. This allows comparison to state of the art algorithms such as Least Squares Twin Support Vector Machines(LSTSVM) and Robust Twin Support Vector Machines (R-TSVM). The results prove that PVM is both highly competitive and stable.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用单线性程序求解概率向量机问题
本文提出了最近引入的超平面分类器概率向量机(PVM)的一个显著改进版本。主要目标是提供一个公式,该公式允许快速和鲁棒地解决PVM算法所接近的分类问题。主要结果是引入了单一线性规划(LP)形式,避免了PVM最初引入的迭代过程。这允许比较最先进的算法,如最小二乘双支持向量机(LSTSVM)和鲁棒双支持向量机(R-TSVM)。结果表明,PVM具有很强的竞争力和稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
From the Desktop to the Multi-clouds: The Case of ModelioSaaS Bound Propagation for Arithmetic Reasoning in Vampire Dependence of the Oscillatory Movements of an Unmanned Aerial Vehicle on the Forward Velocity Cph CT Toolbox: CT Reconstruction for Education, Research and Industrial Applications Non-interleaving Operational Semantics for Geographically Replicated Databases
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1