Transition path theory for Langevin dynamics on manifold: optimal control and data-driven solver

Yuan Gao, Tiejun Li, Xiaoguang Li, Jianguo Liu
{"title":"Transition path theory for Langevin dynamics on manifold: optimal control and data-driven solver","authors":"Yuan Gao, Tiejun Li, Xiaoguang Li, Jianguo Liu","doi":"10.1137/21M1437883","DOIUrl":null,"url":null,"abstract":"We present a data-driven point of view for the rare events, which represent conformational transitions in biochemical reactions modeled by over-damped Langevin dynamics on manifolds in high dimensions. Given the point clouds sampled from an unknown reaction dynamics, we construct a discrete Markov process based on an approximated Voronoi tesselation which incorporates both the equilibrium and the manifold information. We reinterpret the transition state theory and transition path theory from the optimal control viewpoint. The controlled random walk on point clouds is utilized to simulate the transition path, which becomes an almost sure event instead of a rare event in the original reaction dynamics. Some numerical examples on sphere and torus are conducted to illustrate the data-driven solver for transition path theory on point clouds. The resulting dominated transition path highly coincides with the mean transition path obtained via the controlled Monte Carlo simulations.","PeriodicalId":313703,"journal":{"name":"Multiscale Model. Simul.","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Multiscale Model. Simul.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1137/21M1437883","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

Abstract

We present a data-driven point of view for the rare events, which represent conformational transitions in biochemical reactions modeled by over-damped Langevin dynamics on manifolds in high dimensions. Given the point clouds sampled from an unknown reaction dynamics, we construct a discrete Markov process based on an approximated Voronoi tesselation which incorporates both the equilibrium and the manifold information. We reinterpret the transition state theory and transition path theory from the optimal control viewpoint. The controlled random walk on point clouds is utilized to simulate the transition path, which becomes an almost sure event instead of a rare event in the original reaction dynamics. Some numerical examples on sphere and torus are conducted to illustrate the data-driven solver for transition path theory on point clouds. The resulting dominated transition path highly coincides with the mean transition path obtained via the controlled Monte Carlo simulations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
流形上朗之万动力学的过渡路径理论:最优控制和数据驱动求解器
我们提出了一个罕见事件的数据驱动的观点,这些罕见事件代表了在高维流形上由过阻尼朗之万动力学模拟的生化反应中的构象转变。给定从未知反应动力学中采样的点云,我们基于近似Voronoi镶嵌构造了一个包含平衡和流形信息的离散马尔可夫过程。从最优控制的角度重新解释了过渡状态理论和过渡路径理论。利用点云上的受控随机游动来模拟过渡路径,使其由原来反应动力学中的罕见事件变成了几乎确定的事件。以球面和环面为例,说明了数据驱动的点云过渡路径理论求解方法。所得的主导过渡路径与受控蒙特卡罗模拟得到的平均过渡路径高度吻合。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Multiscale Analysis for Dynamic Contact Angle Hysteresis on Rough Surfaces Metropolis Crystal Surface Dynamics in the Rough Scaling Limit: From Local Equilibrium to Semi-Empirical PDE QM/MM Methods for Crystalline Defects. Part 3: Machine-Learned MM Models A Diffuse-Domain Phase-Field Lattice Boltzmann Method for Two-Phase Flows in Complex Geometries Homogenization of the Stokes System in a Domain with an Oscillating Boundary
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1