{"title":"Profile-driven code execution for low power dissipation","authors":"Diana Marculescu","doi":"10.1109/LPE.2000.155294","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel technique for power-performance trade-off based on profile-driven code execution. Specifically, we show that there is an optimal level of parallelism for energy consumption and propose a compiler-assisted technique for code annotation that can be used at run-time to adaptively trade-off power and performance. As shown by experimental results, our approach is up to 23% better than clock throttling and is as efficient as voltage scaling (up to 10% better in some cases). The technique proposed in this paper can be used by an ACPI-compliant power manager for prolonging battery life or as a passive cooling feature for thermal management.","PeriodicalId":188020,"journal":{"name":"ISLPED'00: Proceedings of the 2000 International Symposium on Low Power Electronics and Design (Cat. No.00TH8514)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"43","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISLPED'00: Proceedings of the 2000 International Symposium on Low Power Electronics and Design (Cat. No.00TH8514)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LPE.2000.155294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 43
Abstract
This paper proposes a novel technique for power-performance trade-off based on profile-driven code execution. Specifically, we show that there is an optimal level of parallelism for energy consumption and propose a compiler-assisted technique for code annotation that can be used at run-time to adaptively trade-off power and performance. As shown by experimental results, our approach is up to 23% better than clock throttling and is as efficient as voltage scaling (up to 10% better in some cases). The technique proposed in this paper can be used by an ACPI-compliant power manager for prolonging battery life or as a passive cooling feature for thermal management.