Study of DNA nanoparticle manipulation using atomic force microscopy based on finite element method using theories of contact mechanics

M. Khalili, M. Taheri, S. H. Bathaee, Faeze Shakeri
{"title":"Study of DNA nanoparticle manipulation using atomic force microscopy based on finite element method using theories of contact mechanics","authors":"M. Khalili, M. Taheri, S. H. Bathaee, Faeze Shakeri","doi":"10.52547/masm.1.2.155","DOIUrl":null,"url":null,"abstract":"using microscopy based on element method using Nanoparticle manipulation is a process in which particles are moved on a micro/ nanoscale scale using an atomic force microscope and has a wide range of applications from component production to the medical world. In this study, using the theories of contact mechanics of Hertz, JKR, DMT and BSP, as well as using the structure of the DNA biological cell using the Elman method using ABAQUS software to study the amount of displacement, acceleration, force, stress and velocity in time The DNA molecule is discussed on a base sheet and the factors that affect them. The results show that in the deformation between the target particles and the spherical tip of the needle, the Hertz model showed the least and the JKR model showed the highest deformation and penetration depth. By increasing the angle of the needle tip with the z-axis, the amount of penetration depth and deformation created between the particle and the base plate is reduced. Also, the graph of changes in each of the studied parameters of the effective factors per 20 μm of displacement and 20 milliseconds of time for the DNA manipulation process has been calculated.","PeriodicalId":167079,"journal":{"name":"Mechanic of Advanced and Smart Materials","volume":"55 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mechanic of Advanced and Smart Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52547/masm.1.2.155","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

using microscopy based on element method using Nanoparticle manipulation is a process in which particles are moved on a micro/ nanoscale scale using an atomic force microscope and has a wide range of applications from component production to the medical world. In this study, using the theories of contact mechanics of Hertz, JKR, DMT and BSP, as well as using the structure of the DNA biological cell using the Elman method using ABAQUS software to study the amount of displacement, acceleration, force, stress and velocity in time The DNA molecule is discussed on a base sheet and the factors that affect them. The results show that in the deformation between the target particles and the spherical tip of the needle, the Hertz model showed the least and the JKR model showed the highest deformation and penetration depth. By increasing the angle of the needle tip with the z-axis, the amount of penetration depth and deformation created between the particle and the base plate is reduced. Also, the graph of changes in each of the studied parameters of the effective factors per 20 μm of displacement and 20 milliseconds of time for the DNA manipulation process has been calculated.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于接触力学理论的有限元法原子力显微镜对DNA纳米粒子操作的研究
基于元素法的纳米粒子操作是一种使用原子力显微镜在微/纳米尺度上移动粒子的过程,从部件生产到医学领域有着广泛的应用。本研究利用Hertz、JKR、DMT和BSP的接触力学理论,利用DNA生物细胞的结构,采用Elman法,利用ABAQUS软件研究DNA分子在碱基片上的位移量、加速度、力、应力和速度随时间的变化及其影响因素。结果表明:在目标粒子与球形针尖之间的变形中,Hertz模型的变形最小,JKR模型的变形和穿透深度最大;通过增加针尖与z轴的夹角,颗粒与底板之间产生的穿透深度和变形量减少。并计算了DNA处理过程中每20 μm位移和20毫秒时间内各有效因子参数的变化曲线图。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Unique Approach to Investigate the Free Vibrations of Non-uniform and Functionally Graded Euler-Bernoulli Beams Investigating the effect of fluid-structure interaction on the vibrations of fiber-metal laminated cylindrical shells bonded by piezoelectric actuator and sensor layer Design and numerical modeling of CdTe nanostructured thin film solar cell and the effect of CdSeXTe1-X intermediate layer on the efficiency enhancement by SCAPS-1D software Performance analysis in square cyclones using Sobol statistical sensitivity analysis method A review on properties, types and applications of auxetic structures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1