Remaining useful life (RUL) prediction for FDIA on IoT sensor data using CNN and GRU

Shipra Singh, Kaptan Singh, Anika Saxena
{"title":"Remaining useful life (RUL) prediction for FDIA on IoT sensor data using CNN and GRU","authors":"Shipra Singh, Kaptan Singh, Anika Saxena","doi":"10.1109/ICATME50232.2021.9732743","DOIUrl":null,"url":null,"abstract":"The industrial Internet of Things (IIoT) is the use of Internet of Things (IoT) technologies in manufacturing which tackles smartly the machine data generated by various sensors and applies various analytics on it to gain useful information. Predictive maintenance (PdM) is a method of preventing asset failure by analyzing production data and identifying patterns to predict issues before they happen. IoT Sensor nodes are also vulnerable to different threats and attacks, which primarily include false data injection attack (FDIA). This paper predicts the accurate remaining useful life (RUL) of IoT device through industrial predictive maintenance (PdM) and exhibits the effect of FDIA on a PdM system through convolutional neural network (CNN) and gated recurrent unit (GRU), for predicting the RUL using the C-MAPSS dataset of a turbo fan engine and gives their comparative result.","PeriodicalId":414180,"journal":{"name":"2021 International Conference on Advances in Technology, Management & Education (ICATME)","volume":"53 3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Conference on Advances in Technology, Management & Education (ICATME)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICATME50232.2021.9732743","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The industrial Internet of Things (IIoT) is the use of Internet of Things (IoT) technologies in manufacturing which tackles smartly the machine data generated by various sensors and applies various analytics on it to gain useful information. Predictive maintenance (PdM) is a method of preventing asset failure by analyzing production data and identifying patterns to predict issues before they happen. IoT Sensor nodes are also vulnerable to different threats and attacks, which primarily include false data injection attack (FDIA). This paper predicts the accurate remaining useful life (RUL) of IoT device through industrial predictive maintenance (PdM) and exhibits the effect of FDIA on a PdM system through convolutional neural network (CNN) and gated recurrent unit (GRU), for predicting the RUL using the C-MAPSS dataset of a turbo fan engine and gives their comparative result.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
使用CNN和GRU对物联网传感器数据进行FDIA剩余使用寿命(RUL)预测
工业物联网(IIoT)是物联网(IoT)技术在制造业中的应用,它智能地处理由各种传感器生成的机器数据,并对其应用各种分析以获得有用的信息。预测性维护(PdM)是一种通过分析生产数据和识别模式来预防资产故障的方法,可以在问题发生之前进行预测。物联网传感器节点也容易受到不同的威胁和攻击,主要包括虚假数据注入攻击(FDIA)。本文通过工业预测性维护(PdM)预测物联网设备的准确剩余使用寿命(RUL),并通过卷积神经网络(CNN)和门控循环单元(GRU)展示FDIA对PdM系统的影响,使用涡轮风扇发动机的C-MAPSS数据集预测RUL,并给出它们的比较结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimization of Robust Image Watermarking using Ensemble-Based Classifier A Robust Pentagon Patch Antenna with Circular Notch for Wireless Devices A comparative study of observed Ionospheric critical frequency (using ionosonde) and the IRI-2016 model A Robust Octagon Shape with Defected Ground Structure Patch Antenna for Wi-Max Range An improved genetic clustering architecture for real-time satellite image segmentation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1