Nearly-optimal compression matrices for signal power estimation

Daniel Romero, Roberto López-Valcarce
{"title":"Nearly-optimal compression matrices for signal power estimation","authors":"Daniel Romero, Roberto López-Valcarce","doi":"10.1109/SPAWC.2014.6941849","DOIUrl":null,"url":null,"abstract":"We present designs for compression matrices minimizing the Cramér-Rao bound for estimating the power of a stationary Gaussian process, whose second-order statistics are known up to a scaling factor, in the presence of (possibly colored) Gaussian noise. For known noise power, optimum designs can be found assuming either low or high signal-to-noise ratio (SNR). In both cases the optimal schemes sample the frequency bins with highest SNR, suggesting near-optimality for all SNR values. In the case of unknown noise power, optimal patterns in both SNR regimes sample two subsets of frequency bins with lowest and highest SNR, which also suggests that they are nearly-optimal for all SNR values.","PeriodicalId":420837,"journal":{"name":"2014 IEEE 15th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE 15th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SPAWC.2014.6941849","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

We present designs for compression matrices minimizing the Cramér-Rao bound for estimating the power of a stationary Gaussian process, whose second-order statistics are known up to a scaling factor, in the presence of (possibly colored) Gaussian noise. For known noise power, optimum designs can be found assuming either low or high signal-to-noise ratio (SNR). In both cases the optimal schemes sample the frequency bins with highest SNR, suggesting near-optimality for all SNR values. In the case of unknown noise power, optimal patterns in both SNR regimes sample two subsets of frequency bins with lowest and highest SNR, which also suggests that they are nearly-optimal for all SNR values.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
用于信号功率估计的近最优压缩矩阵
我们提出了一种压缩矩阵的设计,用于估计平稳高斯过程的功率,其二阶统计量已知到一个比例因子,在存在(可能是有色的)高斯噪声的情况下。对于已知的噪声功率,可以在低信噪比或高信噪比的情况下找到最佳设计。在这两种情况下,最优方案对信噪比最高的频率箱进行采样,表明所有信噪比值都接近最优。在未知噪声功率的情况下,两种信噪比制度中的最佳模式对具有最低和最高信噪比的频率箱的两个子集进行采样,这也表明它们对于所有信噪比值几乎都是最佳的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Unifying viewpoints on distributed asynchronous optimization for MISO interference channels Sparse channel estimation including the impact of the transceiver filters with application to OFDM Towards a principled approach to designing distributed MAC protocols Information rates employing 1-bit quantization and oversampling at the receiver Suppression of pilot-contamination in massive MIMO systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1