28.81 % Efficient, Low Light Intensity and High Temperature Sustainable Ultra-Thin IBC Solar Cell

Md. Mahfuzur Rahman, A. Nawabjan
{"title":"28.81 % Efficient, Low Light Intensity and High Temperature Sustainable Ultra-Thin IBC Solar Cell","authors":"Md. Mahfuzur Rahman, A. Nawabjan","doi":"10.1109/PECCON55017.2022.9851032","DOIUrl":null,"url":null,"abstract":"The interdigitated back contact (IBC) structure for crystalline-silicon photovoltaic device has long been recognized as an effective technique to overcome the 25% efficiency barrier by shifting all the electrical conducting elements to the backside of the cell. For this structure, the architecture of material interlayer IBC electrodes is very important to reduce the recombination rate without affecting the work function at the metal-semiconductor interface for optimum dissolution and extraction of carriers from the absorber layer. Higher efficiency requires a balance between absolute crystal material and impurities in the semiconductor, doping concentration and PN Junctions, smart grid wires and intelligent sunlight capturing. In this work, the fabrication of a low light intensity functional and high cell temperature sustainable, IBC solar cell is investigated. Silicon-Heterojunction layer to absorb greater solar spectrum and interdigitated N/P contacts have been implemented, which grants the cell to receive full surface sunlight, results in ~29% efficiency. Luminous-an optoelectronic device simulator has been utilized to construct a very thin cell with dimensions of 100×150pm. The effects of sunlight intensity and module temperature on the performance have been investigated and the parameters for the most efficient structure were found with 28.81% efficiency and 87. 68%fillfactor rate, making it ultra-thin, flexible and durable providing a wide range of operational capabilities.","PeriodicalId":129147,"journal":{"name":"2022 International Virtual Conference on Power Engineering Computing and Control: Developments in Electric Vehicles and Energy Sector for Sustainable Future (PECCON)","volume":"46 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 International Virtual Conference on Power Engineering Computing and Control: Developments in Electric Vehicles and Energy Sector for Sustainable Future (PECCON)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PECCON55017.2022.9851032","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The interdigitated back contact (IBC) structure for crystalline-silicon photovoltaic device has long been recognized as an effective technique to overcome the 25% efficiency barrier by shifting all the electrical conducting elements to the backside of the cell. For this structure, the architecture of material interlayer IBC electrodes is very important to reduce the recombination rate without affecting the work function at the metal-semiconductor interface for optimum dissolution and extraction of carriers from the absorber layer. Higher efficiency requires a balance between absolute crystal material and impurities in the semiconductor, doping concentration and PN Junctions, smart grid wires and intelligent sunlight capturing. In this work, the fabrication of a low light intensity functional and high cell temperature sustainable, IBC solar cell is investigated. Silicon-Heterojunction layer to absorb greater solar spectrum and interdigitated N/P contacts have been implemented, which grants the cell to receive full surface sunlight, results in ~29% efficiency. Luminous-an optoelectronic device simulator has been utilized to construct a very thin cell with dimensions of 100×150pm. The effects of sunlight intensity and module temperature on the performance have been investigated and the parameters for the most efficient structure were found with 28.81% efficiency and 87. 68%fillfactor rate, making it ultra-thin, flexible and durable providing a wide range of operational capabilities.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
28.81%效率,低光强和高温可持续超薄IBC太阳能电池
晶体硅光电器件的交叉背接触(IBC)结构长期以来被认为是克服25%效率障碍的有效技术,它将所有的导电元件转移到电池的背面。对于这种结构,材料层间IBC电极的结构非常重要,它可以在不影响金属-半导体界面功函数的情况下降低复合速率,从而实现吸收层载流子的最佳溶解和萃取。更高的效率需要在半导体中的绝对晶体材料和杂质、掺杂浓度和PN结、智能电网电线和智能阳光捕获之间取得平衡。本文研究了一种具有低光强功能和高电池温度可持续的IBC太阳能电池的制备方法。硅异质结层可以吸收更大的太阳光谱和交叉的N/P接触,这使得电池可以接收到全部的表面阳光,效率达到29%。利用光电子器件模拟器构建了一个尺寸为100×150pm的非常薄的电池。研究了光照强度和组件温度对性能的影响,得到了效率最高的结构参数,效率分别为28.81%和87。68%的填充率,使其超薄,灵活耐用,提供广泛的操作能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Energy Storage System with Artificial Neural Networks using PI Hybrid Controllers Review and Analysis of Techniques to Mitigate Sub Synchronous Resonance using FACTS Devices 12-Pulse Power Inverter with Fixed Switching Angle for Grid-connected PV Array TWO-STAGE VOLTAGE REGULATOR FED VOLTAGE CONTROL USING PIC MICRO CONTROLLER Performance Assessment of Grey Wolf Technique for AGC of Multi-source Intertied System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1