{"title":"A Noninvasive Multimodal Sono-contrast NIR Spectroscopy System for Breast Cancer Diagnosis","authors":"K. Yan, T. Podder, Ke Huang, Yan Yu, L. Liao","doi":"10.1109/BIBE.2010.55","DOIUrl":null,"url":null,"abstract":"We have developed a multimodal imaging system that combines three modalities, optical spectroscopy, ultrasonography and acoustic radiation force (ARF) for improving diagnosis of breast cancer based on noninvasive interrogation of vasculature. This paper presents a detailed system design. The safety issues regarding the use of laser and ultrasound have also been addressed in this paper. The maximum exposure to skin for laser was controlled within 0.2 W•cm-2 (ANSI Z136.1); exposure from ARF fields were maintained below the FDA diagnostic limit (0.72 W•cm-2). This multimodal system has the potential to improve tumor detection by deploying ARF to produce a measurable difference in the dynamic behavior of the tissue blood supply environment as interrogated by optical spectroscopy, which was demonstrated to be highly diagnostic in a murine tumor model. Pilot clinical study is being carried out.","PeriodicalId":330904,"journal":{"name":"2010 IEEE International Conference on BioInformatics and BioEngineering","volume":"25 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on BioInformatics and BioEngineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/BIBE.2010.55","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
Abstract
We have developed a multimodal imaging system that combines three modalities, optical spectroscopy, ultrasonography and acoustic radiation force (ARF) for improving diagnosis of breast cancer based on noninvasive interrogation of vasculature. This paper presents a detailed system design. The safety issues regarding the use of laser and ultrasound have also been addressed in this paper. The maximum exposure to skin for laser was controlled within 0.2 W•cm-2 (ANSI Z136.1); exposure from ARF fields were maintained below the FDA diagnostic limit (0.72 W•cm-2). This multimodal system has the potential to improve tumor detection by deploying ARF to produce a measurable difference in the dynamic behavior of the tissue blood supply environment as interrogated by optical spectroscopy, which was demonstrated to be highly diagnostic in a murine tumor model. Pilot clinical study is being carried out.