False Positive Reduction in Colonic Polyp Detection Using Glocal Information

Mira Park, Jesse S. Jin, P. Summons, S. Luo, R. Hofstetter
{"title":"False Positive Reduction in Colonic Polyp Detection Using Glocal Information","authors":"Mira Park, Jesse S. Jin, P. Summons, S. Luo, R. Hofstetter","doi":"10.1109/DICTA.2010.12","DOIUrl":null,"url":null,"abstract":"This paper proposes an explicit parametric model for colonic polyps. The model captures the overall shape of the polyp and is then used to derive the probability distribution of features relevant for polyp detection. The probability distribution represents the glocal properties of the polyp candidates, where the glocal properties capture both global and local information of an object. The probability distribution is implemented on the unit sphere, which is divided into 26 partitions, and each partition captures the local properties of a polyp candidate. From the partitions on the sphere, an observation sequence also defines global properties of the polyp candidate and the observation sequence is assessed by explicit models for classification. When it represents glocal parameters of a polyp candidate, we call the unit sphere a brilliant sphere. The parametric models are estimated from 20 geometric models typifying the various cap shapes of colonic polyps.","PeriodicalId":246460,"journal":{"name":"2010 International Conference on Digital Image Computing: Techniques and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 International Conference on Digital Image Computing: Techniques and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DICTA.2010.12","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper proposes an explicit parametric model for colonic polyps. The model captures the overall shape of the polyp and is then used to derive the probability distribution of features relevant for polyp detection. The probability distribution represents the glocal properties of the polyp candidates, where the glocal properties capture both global and local information of an object. The probability distribution is implemented on the unit sphere, which is divided into 26 partitions, and each partition captures the local properties of a polyp candidate. From the partitions on the sphere, an observation sequence also defines global properties of the polyp candidate and the observation sequence is assessed by explicit models for classification. When it represents glocal parameters of a polyp candidate, we call the unit sphere a brilliant sphere. The parametric models are estimated from 20 geometric models typifying the various cap shapes of colonic polyps.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用Glocal信息减少结肠息肉检测中的假阳性
本文提出了结肠息肉的显式参数模型。该模型捕获息肉的整体形状,然后用于导出与息肉检测相关的特征的概率分布。概率分布表示息肉候选的全局局部属性,其中全局局部属性捕获对象的全局和局部信息。概率分布在单位球上实现,单位球被划分为26个分区,每个分区捕获一个息肉候选的局部属性。从球体上的分区中定义一个观察序列,并通过显式模型评估观察序列进行分类。当它表示息肉候选体的全局参数时,我们称单位球为辉煌球。参数模型是根据20个几何模型估计的,这些模型代表了结肠息肉的各种帽形。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Pulse Repetition Interval Modulation Recognition Using Symbolization Vessel Segmentation from Color Retinal Images with Varying Contrast and Central Reflex Properties A Novel Algorithm for Text Detection and Localization in Natural Scene Images Image Retrieval with a Visual Thesaurus Chromosome Classification Based on Wavelet Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1