Mixed vapour identification using partition column-QCMs and Artificial Neural Network

M. Rivai, A. Arifin, Eva Inaiyah Agustin
{"title":"Mixed vapour identification using partition column-QCMs and Artificial Neural Network","authors":"M. Rivai, A. Arifin, Eva Inaiyah Agustin","doi":"10.1109/ICTS.2016.7910294","DOIUrl":null,"url":null,"abstract":"This Paper presents the identification of mixed vapour using electronic nose system composed of Quartz Crystal Microbalance (QCM) sensor array and a partition column of gas chromatography. The polymer coated QCMs produced a specific frequency shift. The data set was processed by an Artificial Neural Network using Backpropagation algorithm as a pattern recognition. The result showed that this equipment was able to identify five types of vapours namely benzene, acetone, isopropyl alcohol, non-polar and polar mixture (i.e. benzene and acetone), and also polar and polar mixture (i.e. isopropyl alcohol and acetone) with the identification rate of 96%.","PeriodicalId":177275,"journal":{"name":"2016 International Conference on Information & Communication Technology and Systems (ICTS)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Information & Communication Technology and Systems (ICTS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTS.2016.7910294","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

This Paper presents the identification of mixed vapour using electronic nose system composed of Quartz Crystal Microbalance (QCM) sensor array and a partition column of gas chromatography. The polymer coated QCMs produced a specific frequency shift. The data set was processed by an Artificial Neural Network using Backpropagation algorithm as a pattern recognition. The result showed that this equipment was able to identify five types of vapours namely benzene, acetone, isopropyl alcohol, non-polar and polar mixture (i.e. benzene and acetone), and also polar and polar mixture (i.e. isopropyl alcohol and acetone) with the identification rate of 96%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于分区柱- qcm和人工神经网络的混合蒸汽识别
本文介绍了用石英晶体微天平(QCM)传感器阵列和气相色谱隔板柱组成的电子鼻系统对混合蒸汽进行鉴别。聚合物涂层的qcm产生了特定的频移。采用反向传播算法对数据集进行人工神经网络处理作为模式识别。结果表明,该装置能够对苯、丙酮、异丙醇、非极性和极性混合物(即苯和丙酮)以及极性和极性混合物(即异丙醇和丙酮)五种蒸汽进行识别,识别率为96%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Detecting source code plagiarism on introductory programming course assignments using a bytecode approach Indonesia scholarship selection framework using fuzzy inferences system approach: Case study: “Bidik Misi” scholarship selection Face recognition based on Extended Symmetric Local Graph Structure Early detection study of Kidney Organ Complication caused by Diabetes Mellitus using iris image color constancy Heart murmurs extraction using the complete Ensemble Empirical Mode Decomposition and the Pearson distance metric
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1