Feature Selection Techniques and its Importance in Machine Learning: A Survey

T. N, Roopam K. Gupta
{"title":"Feature Selection Techniques and its Importance in Machine Learning: A Survey","authors":"T. N, Roopam K. Gupta","doi":"10.1109/SCEECS48394.2020.189","DOIUrl":null,"url":null,"abstract":"Feature selection is well studied research topic in the field of artificial intelligence, machine learning and pattern recognition. Feature selection it removes the redundant, irrelevant and noisy features from the original features of datasets by choosing the relevant features having the smaller subdivision of dataset. By applying various techniques of feature selection to the datasets, results in lower computational costs, higher classifier accuracy, reduced dimensionality and predictable model. This article investigates, feature selection techniques found in various literatures.","PeriodicalId":167175,"journal":{"name":"2020 IEEE International Students' Conference on Electrical,Electronics and Computer Science (SCEECS)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Students' Conference on Electrical,Electronics and Computer Science (SCEECS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SCEECS48394.2020.189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

Abstract

Feature selection is well studied research topic in the field of artificial intelligence, machine learning and pattern recognition. Feature selection it removes the redundant, irrelevant and noisy features from the original features of datasets by choosing the relevant features having the smaller subdivision of dataset. By applying various techniques of feature selection to the datasets, results in lower computational costs, higher classifier accuracy, reduced dimensionality and predictable model. This article investigates, feature selection techniques found in various literatures.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
特征选择技术及其在机器学习中的重要性综述
特征选择是人工智能、机器学习和模式识别领域中研究较多的研究课题。特征选择是通过选择数据集细分较小的相关特征,从数据集的原始特征中剔除冗余、不相关和有噪声的特征。通过将各种特征选择技术应用于数据集,降低了计算成本,提高了分类器的精度,降低了维数,提高了模型的可预测性。本文研究了各种文献中发现的特征选择技术。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Various Types of Wireless Battery Management System in Ev Recognition of Faults in Grid Connected Solar Photovoltaic Farm Using Current Features Evaluated Using Stockwell Transform Based Algorithm Distracted Driver Detection using Stacking Ensemble Performance Analysis of Partial Shading on Solar Photovoltaic System under Aluminium Reflectors A Review on Prediction of Early Heart Attack Based on Degradation of Graphene Oxide and Carbon Nanotube using Myeloperoxidase
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1