On Some Properties of the lbest Topology in Particle Swarm Optimization

Sayan Ghosh, Debarati Kundu, K. Suresh, Swagatam Das, A. Abraham, B. K. Panigrahi, V. Snás̃el
{"title":"On Some Properties of the lbest Topology in Particle Swarm Optimization","authors":"Sayan Ghosh, Debarati Kundu, K. Suresh, Swagatam Das, A. Abraham, B. K. Panigrahi, V. Snás̃el","doi":"10.1109/HIS.2009.288","DOIUrl":null,"url":null,"abstract":"Particle Swarm Optimization (PSO) is arguably one of the most popular nature- inspired algorithms for real parameter optimization at present. The existing theoretical research on PSO is mostly based on the gbest (global best) particle topology, which usually is susceptible to false or premature convergence over multi-modal fitness landscapes. The present standard PSO (SPSO 2007) uses an lbest (local best) topology where a particle is stochastically attracted not towards the best position found in the entire swarm, but towards the best position found by any particle in its topological neighborhood. This paper presents a first step towards a probabilistic analysis of the lbest PSO with variable random neighborhood topology by addressing issues like inter-particle interaction and probabilities of selection based on particle ranks.","PeriodicalId":414085,"journal":{"name":"2009 Ninth International Conference on Hybrid Intelligent Systems","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Ninth International Conference on Hybrid Intelligent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HIS.2009.288","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 20

Abstract

Particle Swarm Optimization (PSO) is arguably one of the most popular nature- inspired algorithms for real parameter optimization at present. The existing theoretical research on PSO is mostly based on the gbest (global best) particle topology, which usually is susceptible to false or premature convergence over multi-modal fitness landscapes. The present standard PSO (SPSO 2007) uses an lbest (local best) topology where a particle is stochastically attracted not towards the best position found in the entire swarm, but towards the best position found by any particle in its topological neighborhood. This paper presents a first step towards a probabilistic analysis of the lbest PSO with variable random neighborhood topology by addressing issues like inter-particle interaction and probabilities of selection based on particle ranks.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
粒子群优化中最优拓扑的若干性质
粒子群算法(PSO)可以说是目前最流行的基于自然的实参数优化算法之一。现有的粒子群优化理论研究大多基于全局最优粒子拓扑,在多模态适应度环境下容易出现假收敛或过早收敛。目前的标准粒子群算法(SPSO 2007)采用了一种局部最优拓扑,在这种拓扑中,一个粒子被随机吸引,不是朝着整个群体中找到的最佳位置,而是朝着其拓扑邻域中任何粒子找到的最佳位置。本文通过解决粒子间相互作用和基于粒子秩的选择概率等问题,向具有可变随机邻域拓扑的最优粒子群的概率分析迈出了第一步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A New Intelligent Authorization Agent Model in Grid Backing up Truck Control Automatically Based on LOS Study on Generation Companies' Bidding Strategy Based on Hybrid Intelligent Method Sentence Features Fusion for Text Summarization Using Fuzzy Logic Available Bandwidth Estimation in IEEE 802.11 Ad Hoc Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1