{"title":"Stress-Strain Response of Copper-Based Spring Materials under Forward and Reverse Deformations and Its Mathematical Description","authors":"Y. Hattori, K. Furukawa, F. Yoshida","doi":"10.1109/HOLM.2011.6034819","DOIUrl":null,"url":null,"abstract":"The reliability of a connector depends on the contact force generated by the spring in the terminal of a connector. The springs are commonly formed by stamping from a strip of spring material. Therefore, the prediction of the force - displacement relation by the finite element method (FEM) is very important for the design of terminals. For simulation, an accurate model of stress-strain (s-s) responses of the materials is required. When the materials are deformed in the forward and then the reverse directions, almost all spring materials show different s-s responses between the two directions, due to the Bauschinger effect. This phenomenon makes simulation difficult because the s-s response depends on the prior deformation of the material. In this paper, the s-s response of copper-based materials, which were measured by tension and compression testing, will be presented. The mathematical description of experimental results will also be reported with the Yoshida-Uemori model, which is a constitutive model having high capability of describing the elastic and plastic behavior of cyclic deformation. The calculated s-s responses were in good agreement with the corresponding experimental results. Therefore, the use of this model for FE simulation would be recommended for a more accurate prediction of force-displacement relation of the spring.","PeriodicalId":197233,"journal":{"name":"2011 IEEE 57th Holm Conference on Electrical Contacts (Holm)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 57th Holm Conference on Electrical Contacts (Holm)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HOLM.2011.6034819","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2
Abstract
The reliability of a connector depends on the contact force generated by the spring in the terminal of a connector. The springs are commonly formed by stamping from a strip of spring material. Therefore, the prediction of the force - displacement relation by the finite element method (FEM) is very important for the design of terminals. For simulation, an accurate model of stress-strain (s-s) responses of the materials is required. When the materials are deformed in the forward and then the reverse directions, almost all spring materials show different s-s responses between the two directions, due to the Bauschinger effect. This phenomenon makes simulation difficult because the s-s response depends on the prior deformation of the material. In this paper, the s-s response of copper-based materials, which were measured by tension and compression testing, will be presented. The mathematical description of experimental results will also be reported with the Yoshida-Uemori model, which is a constitutive model having high capability of describing the elastic and plastic behavior of cyclic deformation. The calculated s-s responses were in good agreement with the corresponding experimental results. Therefore, the use of this model for FE simulation would be recommended for a more accurate prediction of force-displacement relation of the spring.