Efficient Filters for Geometric Intersection Computations using GPU

Yiming Liu, S. Puri
{"title":"Efficient Filters for Geometric Intersection Computations using GPU","authors":"Yiming Liu, S. Puri","doi":"10.1145/3397536.3422264","DOIUrl":null,"url":null,"abstract":"Geometric intersection algorithms are fundamental in spatial analysis in Geographic Information System (GIS). Applying high performance computing to perform geometric intersection on huge amount of spatial data to get real-time results is necessary. Given two input geometries (polygon or polyline) of a candidate pair, we introduce a new two-step geospatial filter that first creates sketches of the geometries and uses it to detect workload and then refines the sketches by the common areas of sketches to decrease the overall computations in the refine phase. We call this filter PolySketch-based CMBR (PSCMBR) filter. We show the application of this filter in speeding-up line segment intersections (LSI) reporting task that is a basic computation in a variety of geospatial applications like polygon overlay and spatial join. We also developed a parallel PolySketch-based PNP filter to perform PNP tests on GPU which reduces computational workload in PNP tests. Finally, we integrated these new filters to the hierarchical filter and refinement (HiFiRe) system to solve geometric intersection problem. We have implemented the new filter and refine system on GPU using CUDA. The new filters introduced in this paper reduce more computational workload when compared to existing filters. As a result, we get on average 7.96X speedup compared to our prior version of HiFiRe system.","PeriodicalId":233918,"journal":{"name":"Proceedings of the 28th International Conference on Advances in Geographic Information Systems","volume":"148 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 28th International Conference on Advances in Geographic Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3397536.3422264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

Geometric intersection algorithms are fundamental in spatial analysis in Geographic Information System (GIS). Applying high performance computing to perform geometric intersection on huge amount of spatial data to get real-time results is necessary. Given two input geometries (polygon or polyline) of a candidate pair, we introduce a new two-step geospatial filter that first creates sketches of the geometries and uses it to detect workload and then refines the sketches by the common areas of sketches to decrease the overall computations in the refine phase. We call this filter PolySketch-based CMBR (PSCMBR) filter. We show the application of this filter in speeding-up line segment intersections (LSI) reporting task that is a basic computation in a variety of geospatial applications like polygon overlay and spatial join. We also developed a parallel PolySketch-based PNP filter to perform PNP tests on GPU which reduces computational workload in PNP tests. Finally, we integrated these new filters to the hierarchical filter and refinement (HiFiRe) system to solve geometric intersection problem. We have implemented the new filter and refine system on GPU using CUDA. The new filters introduced in this paper reduce more computational workload when compared to existing filters. As a result, we get on average 7.96X speedup compared to our prior version of HiFiRe system.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
高效过滤器的几何交集计算使用GPU
几何相交算法是地理信息系统(GIS)空间分析的基础。利用高性能计算对海量空间数据进行几何相交,以获得实时结果是十分必要的。给定候选对的两个输入几何形状(多边形或多线形),我们引入了一个新的两步地理空间过滤器,它首先创建几何形状的草图并使用它来检测工作负载,然后通过草图的公共区域对草图进行细化,以减少细化阶段的总体计算量。我们称这种过滤器为基于聚醚基的CMBR (PSCMBR)过滤器。我们展示了该滤波器在加速线段相交(LSI)报告任务中的应用,这是多边形覆盖和空间连接等各种地理空间应用中的基本计算。我们还开发了一个并行的基于polysketch的PNP滤波器,用于在GPU上执行PNP测试,从而减少了PNP测试的计算工作量。最后,我们将这些新的滤波器集成到层次滤波和细化(HiFiRe)系统中,以解决几何相交问题。我们使用CUDA在GPU上实现了新的滤波和细化系统。与现有滤波器相比,本文引入的新滤波器减少了更多的计算工作量。因此,与之前版本的HiFiRe系统相比,我们的平均速度提高了7.96倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Poet Distributed Spatiotemporal Trajectory Query Processing in SQL A Time-Windowed Data Structure for Spatial Density Maps Distributed Spatial-Keyword kNN Monitoring for Location-aware Pub/Sub Platooning Graph for Safer Traffic Management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1