Adaptive Neuro Fuzzy Inference System for Cyber-Intrusion Detection in a Smart Grid

J. C. Bedoya, Chen-Ching Liu, Jing Xie
{"title":"Adaptive Neuro Fuzzy Inference System for Cyber-Intrusion Detection in a Smart Grid","authors":"J. C. Bedoya, Chen-Ching Liu, Jing Xie","doi":"10.1109/ISAP48318.2019.9065956","DOIUrl":null,"url":null,"abstract":"The evolution of the power grid has brought increasing deployment of advance metering infrastructure, penetration of intelligent electronic devices, and integration of physical power system components with information and communications technologies. With the fast-expanding connectivity, cyber vulnerabilities arise due to the use of internet-based communication systems. These systems are targets of cyber-intrusions which attempt to disturb the normal power system functions. Traditional intrusion detection algorithms have been developed without an explicit model of the cyber components. In this paper, an algorithm to detect false data injections in the power system is proposed considering both cyber and physical models of the power system. The algorithm is based on an Adaptive Neuro Fuzzy Inference System (ANFIS) which collects information from state variables of the cyber-physical system to meet the performance requirements of the grid. Simulations of the proposed approach using the IEEE 13-bus test system validate the effectiveness of this artificial intelligence-based algorithm.","PeriodicalId":316020,"journal":{"name":"2019 20th International Conference on Intelligent System Application to Power Systems (ISAP)","volume":"22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 20th International Conference on Intelligent System Application to Power Systems (ISAP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISAP48318.2019.9065956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The evolution of the power grid has brought increasing deployment of advance metering infrastructure, penetration of intelligent electronic devices, and integration of physical power system components with information and communications technologies. With the fast-expanding connectivity, cyber vulnerabilities arise due to the use of internet-based communication systems. These systems are targets of cyber-intrusions which attempt to disturb the normal power system functions. Traditional intrusion detection algorithms have been developed without an explicit model of the cyber components. In this paper, an algorithm to detect false data injections in the power system is proposed considering both cyber and physical models of the power system. The algorithm is based on an Adaptive Neuro Fuzzy Inference System (ANFIS) which collects information from state variables of the cyber-physical system to meet the performance requirements of the grid. Simulations of the proposed approach using the IEEE 13-bus test system validate the effectiveness of this artificial intelligence-based algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
智能电网网络入侵检测的自适应神经模糊推理系统
电网的发展带来了越来越多的先进计量基础设施的部署,智能电子设备的渗透,以及物理电力系统组件与信息和通信技术的集成。随着网络连接的快速扩展,基于互联网的通信系统的使用产生了网络漏洞。这些系统是网络入侵的目标,试图扰乱正常的电力系统功能。传统的入侵检测算法没有明确的网络组件模型。本文结合电力系统的网络模型和物理模型,提出了一种检测电力系统中假数据注入的算法。该算法基于自适应神经模糊推理系统(ANFIS),该系统从网络物理系统的状态变量中收集信息,以满足电网的性能要求。基于IEEE 13总线测试系统的仿真验证了该算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal allocation of multi-type distributed generators for minimization of power losses in distribution systems Forecasting Power Consumption of IT Devices in a Data Center A Framework for Cyber-Physical Model Creation and Evaluation Predictive Maintenance of Air Conditioning Systems Using Supervised Machine Learning Boost Power Factor Correction Converter fed Domestic Induction Heating System
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1