Using Grounded Word Representations to Study Theories of Lexical Concepts

Dylan Ebert, Ellie Pavlick
{"title":"Using Grounded Word Representations to Study Theories of Lexical Concepts","authors":"Dylan Ebert, Ellie Pavlick","doi":"10.18653/v1/W19-2918","DOIUrl":null,"url":null,"abstract":"The fields of cognitive science and philosophy have proposed many different theories for how humans represent “concepts”. Multiple such theories are compatible with state-of-the-art NLP methods, and could in principle be operationalized using neural networks. We focus on two particularly prominent theories–Classical Theory and Prototype Theory–in the context of visually-grounded lexical representations. We compare when and how the behavior of models based on these theories differs in terms of categorization and entailment tasks. Our preliminary results suggest that Classical-based representations perform better for entailment and Prototype-based representations perform better for categorization. We discuss plans for additional experiments needed to confirm these initial observations.","PeriodicalId":428409,"journal":{"name":"Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Workshop on Cognitive Modeling and Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18653/v1/W19-2918","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The fields of cognitive science and philosophy have proposed many different theories for how humans represent “concepts”. Multiple such theories are compatible with state-of-the-art NLP methods, and could in principle be operationalized using neural networks. We focus on two particularly prominent theories–Classical Theory and Prototype Theory–in the context of visually-grounded lexical representations. We compare when and how the behavior of models based on these theories differs in terms of categorization and entailment tasks. Our preliminary results suggest that Classical-based representations perform better for entailment and Prototype-based representations perform better for categorization. We discuss plans for additional experiments needed to confirm these initial observations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
运用基础词表征研究词汇概念理论
认知科学和哲学领域已经提出了许多关于人类如何表示“概念”的不同理论。多个这样的理论与最先进的NLP方法兼容,原则上可以使用神经网络进行操作。在视觉基础词汇表征的背景下,我们关注两个特别突出的理论——经典理论和原型理论。我们比较了基于这些理论的模型的行为何时以及如何在分类和蕴涵任务方面有所不同。我们的初步结果表明,基于经典的表征在蕴涵方面表现更好,而基于原型的表征在分类方面表现更好。我们讨论了确认这些初步观察结果所需的其他实验计划。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Images and Imagination: Automated Analysis of Priming Effects Related to Autism Spectrum Disorder and Developmental Language Disorder Evaluating Word Embeddings for Language Acquisition Conditioning, but on Which Distribution? Grammatical Gender in German Plural Inflection Production-based Cognitive Models as a Test Suite for Reinforcement Learning Algorithms Guessing the Age of Acquisition of Italian Lemmas through Linear Regression
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1