Incentivizing Privacy-Preserving Crowdsensing for Smart Transportation

Nan Wang, S. Chau
{"title":"Incentivizing Privacy-Preserving Crowdsensing for Smart Transportation","authors":"Nan Wang, S. Chau","doi":"10.1145/3408308.3431131","DOIUrl":null,"url":null,"abstract":"We present a novel mechanism to enhance participatory crowdsensing for smart transportation by integrating privacy-preserving data filtering, aggregation and incentive-driven dissemination. Our mechanism filters out inaccurate data before computing the aggregate statistics (e.g., mean, variance) that will be disseminated as incentives to only the users, who contribute useful data to their computations in a privacy-preserving manner. Based on efficient homomorphic cryptosystems, our privacy-preserving mechanism achieves satisfactory data accuracy and privacy simultaneously.","PeriodicalId":287030,"journal":{"name":"Proceedings of the 7th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation","volume":"32 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 7th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3408308.3431131","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

We present a novel mechanism to enhance participatory crowdsensing for smart transportation by integrating privacy-preserving data filtering, aggregation and incentive-driven dissemination. Our mechanism filters out inaccurate data before computing the aggregate statistics (e.g., mean, variance) that will be disseminated as incentives to only the users, who contribute useful data to their computations in a privacy-preserving manner. Based on efficient homomorphic cryptosystems, our privacy-preserving mechanism achieves satisfactory data accuracy and privacy simultaneously.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
激励保护隐私的智能交通众感
我们提出了一种新的机制,通过整合保护隐私的数据过滤、聚合和激励驱动的传播来增强智能交通的参与式众感。我们的机制在计算汇总统计数据(例如,平均值,方差)之前过滤掉不准确的数据,这些数据将作为奖励传播给仅以保护隐私的方式为其计算提供有用数据的用户。我们的隐私保护机制基于高效的同态密码系统,同时实现了令人满意的数据准确性和隐私性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
The Impacts of CSI Temporal Variations on CSI-based Occupancy Monitoring Systems: An Exploratory Study The CityLearn Challenge 2020 Ecologically Valid Multimodal Data Collection Can Future Wireless Networks Detect Fires? Exploring Time Series Imaging for Load Disaggregation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1