Probabilistic long term load forecast for Nigerian bulk power transmission system expansion planning

A. Melodi, J. Momoh, O. Adeyanju
{"title":"Probabilistic long term load forecast for Nigerian bulk power transmission system expansion planning","authors":"A. Melodi, J. Momoh, O. Adeyanju","doi":"10.1109/POWERAFRICA.2016.7556621","DOIUrl":null,"url":null,"abstract":"The paper proposes probabilistic long-term load forecast and algorithm for application on Nigerian transmission system. The paper applied a developed system specific algorithm comprising Monte Carlo, and artificial neural network techniques that considers location's predominant driving factors as population and GDP growth of the Nigerian system. An initial analysis on obtainable historic data for these factors and load is carried out to obtain possible variability characteristics. The algorithm is implemented in MATLAB-Excel workspaces. Normal mode impact of obtained regional forecasts on test system was obtained by long term power flow computation with NEPLAN software. The system time-step responses suggested reinforcement requirements and guide for the existing Nigerian grid and its long term development.","PeriodicalId":177444,"journal":{"name":"2016 IEEE PES PowerAfrica","volume":"33 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE PES PowerAfrica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/POWERAFRICA.2016.7556621","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 13

Abstract

The paper proposes probabilistic long-term load forecast and algorithm for application on Nigerian transmission system. The paper applied a developed system specific algorithm comprising Monte Carlo, and artificial neural network techniques that considers location's predominant driving factors as population and GDP growth of the Nigerian system. An initial analysis on obtainable historic data for these factors and load is carried out to obtain possible variability characteristics. The algorithm is implemented in MATLAB-Excel workspaces. Normal mode impact of obtained regional forecasts on test system was obtained by long term power flow computation with NEPLAN software. The system time-step responses suggested reinforcement requirements and guide for the existing Nigerian grid and its long term development.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
尼日利亚大容量输电系统扩容规划的长期负荷概率预测
本文提出了尼日利亚输电网长期负荷概率预测及其算法。本文应用了一种开发的系统特定算法,包括蒙特卡罗算法和人工神经网络技术,该算法考虑了尼日利亚系统的人口和GDP增长等位置的主要驱动因素。对这些因素和负荷的可获得的历史数据进行初步分析,以获得可能的变异性特征。该算法在MATLAB-Excel工作空间中实现。利用NEPLAN软件进行长期潮流计算,得到区域预报对试验系统的正态影响。系统的时间步长响应为尼日利亚现有电网及其长期发展提出了加固要求和指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Critical review of the Malawi community energy model Issues and applications of real-time data from off-grid electrical systems Multi objective dynamic economic emission dispatch with renewable energy and emissions Flexible distribution design in microgrids for dynamic power demand in low-income communities Secured access control architecture consideration for smart grids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1