Fundamental Multi-factor Deep-learning Strategy For Cryptocurrency Trading

Yinghe Qing, Jifeng Sun, Ying Kong, Jianwu Lin
{"title":"Fundamental Multi-factor Deep-learning Strategy For Cryptocurrency Trading","authors":"Yinghe Qing, Jifeng Sun, Ying Kong, Jianwu Lin","doi":"10.1109/INDIN51773.2022.9976116","DOIUrl":null,"url":null,"abstract":"This paper investigates how to use deep learning methods to combine with traditional multi-factor models and construct a quantitative trading model based on an AutoEncoder algorithm (AE) to classify cryptocurrencies since 2009, so as to screen out ones with investment value and then construct an effective investment portfolio. The AE algorithm is capable of handling high-dimensional data and mining interfactor non-linearities. Our empirical results on cryptocurrencies show that the model outperforms single-type factors and benchmark in terms of Cumulative Returns and the Sharpe Ratio.","PeriodicalId":359190,"journal":{"name":"2022 IEEE 20th International Conference on Industrial Informatics (INDIN)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2022-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 20th International Conference on Industrial Informatics (INDIN)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/INDIN51773.2022.9976116","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

This paper investigates how to use deep learning methods to combine with traditional multi-factor models and construct a quantitative trading model based on an AutoEncoder algorithm (AE) to classify cryptocurrencies since 2009, so as to screen out ones with investment value and then construct an effective investment portfolio. The AE algorithm is capable of handling high-dimensional data and mining interfactor non-linearities. Our empirical results on cryptocurrencies show that the model outperforms single-type factors and benchmark in terms of Cumulative Returns and the Sharpe Ratio.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
加密货币交易的基本多因素深度学习策略
本文研究了如何利用深度学习方法结合传统的多因素模型,构建基于AutoEncoder算法(AE)的量化交易模型,对2009年以来的加密货币进行分类,从而筛选出具有投资价值的加密货币,构建有效的投资组合。声发射算法具有处理高维数据和挖掘交互因素非线性的能力。我们对加密货币的实证结果表明,该模型在累积回报和夏普比率方面优于单一类型因素和基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Sentiment Analysis of Board Secretaries’ Q&R Data Offset Estimation Based on ARIMA-LSTM for Time Synchronization in Single Twisted Pair Ethernet Dynamic Task Offloading Approach for Task Delay Reduction in the IoT-enabled Fog Computing Systems Fuzzy PID Control for Multi-joint Robotic Arm Graph Attention Network for Financial Aspect-based Sentiment Classification with Contrastive Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1