Variational Bayesian modified adaptive mamdani fuzzy modelling for use in condition monitoring

Yu Zhang, Jun Chen, C. Bingham, T. Gordon
{"title":"Variational Bayesian modified adaptive mamdani fuzzy modelling for use in condition monitoring","authors":"Yu Zhang, Jun Chen, C. Bingham, T. Gordon","doi":"10.1109/CIVEMSA.2015.7158608","DOIUrl":null,"url":null,"abstract":"The paper proposes a new Adaptive Mamdani Fuzzy Model (AMFM) based system modelling methodology that improves on traditional Mamdani fuzzy rule based system (FRBS) techniques through use of alternative membership functions and a defuzzification mechanism that is `differentiable', allowing a back error propagation (BEP) algorithm to refine the initial fuzzy model. Moreover, a variational Bayesian (VB) method is applied to simplify the results via automatic selection of the number of input rules so that redundant rules can be removed for the initial modelling phase. The efficacy of the proposed VB modified AMFM (VB-AMFM) approach is demonstrated through experimental trials using measurements from a compressor in an industrial gas turbine (IGT).","PeriodicalId":348918,"journal":{"name":"2015 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIVEMSA.2015.7158608","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The paper proposes a new Adaptive Mamdani Fuzzy Model (AMFM) based system modelling methodology that improves on traditional Mamdani fuzzy rule based system (FRBS) techniques through use of alternative membership functions and a defuzzification mechanism that is `differentiable', allowing a back error propagation (BEP) algorithm to refine the initial fuzzy model. Moreover, a variational Bayesian (VB) method is applied to simplify the results via automatic selection of the number of input rules so that redundant rules can be removed for the initial modelling phase. The efficacy of the proposed VB modified AMFM (VB-AMFM) approach is demonstrated through experimental trials using measurements from a compressor in an industrial gas turbine (IGT).
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
变分贝叶斯修正自适应mamdani模糊模型在状态监测中的应用
本文提出了一种新的基于自适应Mamdani模糊模型(AMFM)的系统建模方法,该方法通过使用替代隶属函数和“可微”的去模糊化机制,改进了传统的基于Mamdani模糊规则的系统(FRBS)技术,允许反向误差传播(BEP)算法来改进初始模糊模型。此外,采用变分贝叶斯(VB)方法,通过自动选择输入规则的数量来简化结果,以便在初始建模阶段删除冗余规则。通过对工业燃气轮机(IGT)压气机的测量,验证了所提出的VB修正AMFM方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Novel method for failure prognostics of power MOSFET PLS initialized sequential estimator for target localization using AOA measurements Over provisioning rate in three-dimensional wireless sensor networks for partial sensing coverage Sizing compressed-air energy storage tanks for solar home systems Towards visual smart metering exploiting wM-Bus and DLMS/COSEM
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1