Evaluation of a forecast model to predict electricity demand profiles of urban households considering dynamic incentives

Heiko Schroeder, Alexander Hobert, M. Zdrallek, Lena Seeger, C. Backhaus, Pascal Biesenbach
{"title":"Evaluation of a forecast model to predict electricity demand profiles of urban households considering dynamic incentives","authors":"Heiko Schroeder, Alexander Hobert, M. Zdrallek, Lena Seeger, C. Backhaus, Pascal Biesenbach","doi":"10.1049/OAP-CIRED.2021.0224","DOIUrl":null,"url":null,"abstract":"Accurate load forecasting models are required for an efficient operation of energy systems and therefore, they have received increased attention from researches within this field of study. Several mathematical methods have been developed for load forecasting. This work aims at the implementation and evaluation of a modular regression model. Within this study, it is evaluated whether or not the model is suitable to predict different cumulated load profiles and if demand response incentives considered in the model can improve the accuracy.","PeriodicalId":405107,"journal":{"name":"CIRED - Open Access Proceedings Journal","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"CIRED - Open Access Proceedings Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1049/OAP-CIRED.2021.0224","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Accurate load forecasting models are required for an efficient operation of energy systems and therefore, they have received increased attention from researches within this field of study. Several mathematical methods have been developed for load forecasting. This work aims at the implementation and evaluation of a modular regression model. Within this study, it is evaluated whether or not the model is suitable to predict different cumulated load profiles and if demand response incentives considered in the model can improve the accuracy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑动态激励的城市家庭用电需求预测模型的评价
准确的负荷预测模型是能源系统高效运行的必要条件,因此越来越受到该领域研究人员的关注。已有几种数学方法用于负荷预测。这项工作的目的是实现和评估一个模块化回归模型。在本研究中,评估了模型是否适合预测不同的累积负荷分布,以及模型中考虑的需求响应激励是否可以提高模型的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimal battery sizing for a distribution network in Austria to maximise profits and reliability Flexibility and corresponding steering technologies as important elements of the energy transition: regulatory and technical solution approaches Applying reinforcement learning to maximise photovoltaic self-consumption for electric vehicle charging Integrated MV-LV network modelling for DER studies Distribution network capacity allocation for TSO flexibility services
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1