Low-Cost GPS-Aided LiDAR State Estimation and Map Building

Linwei Zheng, Yilong Zhu, Bohuan Xue, Ming Liu, Rui Fan
{"title":"Low-Cost GPS-Aided LiDAR State Estimation and Map Building","authors":"Linwei Zheng, Yilong Zhu, Bohuan Xue, Ming Liu, Rui Fan","doi":"10.1109/IST48021.2019.9010530","DOIUrl":null,"url":null,"abstract":"Using different sensors in an autonomous vehicle (AV) can provide multiple constraints to optimize AV location estimation. In this paper, we present a low-cost GPS-assisted LiDAR state estimation system for AVs. Firstly, we utilize LiDAR to obtain highly precise 3D geometry data. Next, we use an inertial measurement unit (IMU) to correct point cloud misalignment caused by incorrect place recognition. The estimated LiDAR odometry and IMU measurement are then jointly optimized. We use a low-cost GPS instead of a realtime kinematic (RTK) module to refine the estimated LiDAR-inertial odometry. Our low-cost GPS and LiDAR complement each other, and can provide highly accurate vehicle location information. Moreover, a low-cost GPS is much cheaper than an RTK module, which reduces the overall AV sensor cost. Our experimental results demonstrate that our proposed GPS-aided LiDAR-inertial odometry system performs very accurately. The accuracy achieved when processing a dataset collected in an industrial zone is approximately 0.14 m.","PeriodicalId":117219,"journal":{"name":"2019 IEEE International Conference on Imaging Systems and Techniques (IST)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE International Conference on Imaging Systems and Techniques (IST)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IST48021.2019.9010530","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 19

Abstract

Using different sensors in an autonomous vehicle (AV) can provide multiple constraints to optimize AV location estimation. In this paper, we present a low-cost GPS-assisted LiDAR state estimation system for AVs. Firstly, we utilize LiDAR to obtain highly precise 3D geometry data. Next, we use an inertial measurement unit (IMU) to correct point cloud misalignment caused by incorrect place recognition. The estimated LiDAR odometry and IMU measurement are then jointly optimized. We use a low-cost GPS instead of a realtime kinematic (RTK) module to refine the estimated LiDAR-inertial odometry. Our low-cost GPS and LiDAR complement each other, and can provide highly accurate vehicle location information. Moreover, a low-cost GPS is much cheaper than an RTK module, which reduces the overall AV sensor cost. Our experimental results demonstrate that our proposed GPS-aided LiDAR-inertial odometry system performs very accurately. The accuracy achieved when processing a dataset collected in an industrial zone is approximately 0.14 m.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
低成本gps辅助激光雷达状态估计和地图构建
在自动驾驶汽车(AV)中使用不同的传感器可以提供多个约束来优化自动驾驶汽车的位置估计。本文提出了一种低成本的gps辅助激光雷达自动驾驶汽车状态估计系统。首先,我们利用激光雷达获得高精度的三维几何数据。其次,我们使用惯性测量单元(IMU)来纠正由于不正确的位置识别导致的点云不对准。然后对估计的LiDAR里程和IMU测量进行联合优化。我们使用低成本的GPS代替实时运动学(RTK)模块来改进估计的lidar -惯性里程计。我们的低成本GPS和激光雷达相辅相成,可以提供高度精确的车辆位置信息。此外,低成本GPS比RTK模块便宜得多,从而降低了AV传感器的总体成本。实验结果表明,我们提出的gps辅助激光雷达惯性里程计系统性能非常精确。当处理在工业区收集的数据集时,实现的精度约为0.14 m。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Learning Adversarially Enhanced Heatmaps for Aorta Segmentation in CTA Millimeter Wave Imaging of Surface Defects and Corrosion under Paint using V-band Reflectometer An Efficient Human Activity Recognition Framework Based on Wearable IMU Wrist Sensors Retinal Layers OCT Scans 3-D Segmentation Identifying Asthma genetic signature patterns by mining Gene Expression BIG Datasets using Image Filtering Algorithms
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1