Finding meaningful outliers by incorporating negative association rules in Frequent Pattern Outlier Detection Method

F. Shaari, Azmi Ahmad, A. Bakar
{"title":"Finding meaningful outliers by incorporating negative association rules in Frequent Pattern Outlier Detection Method","authors":"F. Shaari, Azmi Ahmad, A. Bakar","doi":"10.1109/ISDA.2012.6416653","DOIUrl":null,"url":null,"abstract":"Outlier Mining has always attract much attention among the data mining community. This paper discusses on the discovery of meaningful outlier based on Frequent Pattern Outlier Detection Method. The PAR rules obtained is explored. By incorporating the Negative Association Rules to the PAR rules, a comprehensive and significant knowledge will be able to discover from the meaningful outliers. These would help experts in the field to interpret better for hidden knowledge especially in medical and scientific fields.","PeriodicalId":370150,"journal":{"name":"2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 12th International Conference on Intelligent Systems Design and Applications (ISDA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISDA.2012.6416653","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

Outlier Mining has always attract much attention among the data mining community. This paper discusses on the discovery of meaningful outlier based on Frequent Pattern Outlier Detection Method. The PAR rules obtained is explored. By incorporating the Negative Association Rules to the PAR rules, a comprehensive and significant knowledge will be able to discover from the meaningful outliers. These would help experts in the field to interpret better for hidden knowledge especially in medical and scientific fields.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
在频繁模式离群点检测方法中引入负关联规则来寻找有意义的离群点
离群值挖掘一直是数据挖掘界关注的焦点。本文讨论了基于频繁模式离群点检测方法的有意义离群点的发现。对得到的PAR规则进行了探讨。通过将负关联规则与PAR规则相结合,可以从有意义的异常值中发现全面而重要的知识。这将有助于该领域的专家更好地解释隐藏的知识,特别是在医学和科学领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Prediction of risk score for heart disease using associative classification and hybrid feature subset selection WSDL-TC: Collaborative customization of web services Knowledge representation and reasoning based on generalised fuzzy Petri nets Interval-valued fuzzy graph representation of concept lattice Community optimization: Function optimization by a simulated web community
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1