Analisis Sentimen Twitter Kuliah Online Pasca Covid-19 Menggunakan Algoritma Support Vector Machine dan Naive Bayes

H. Setiawan, Ema Utami, Sudarmawan Sudarmawan
{"title":"Analisis Sentimen Twitter Kuliah Online Pasca Covid-19 Menggunakan Algoritma Support Vector Machine dan Naive Bayes","authors":"H. Setiawan, Ema Utami, Sudarmawan Sudarmawan","doi":"10.31603/KOMTIKA.V5I1.5189","DOIUrl":null,"url":null,"abstract":"\n \n \nThe World Health Organization (WHO) COVID-19 is an infectious disease caused by the Coronavirus which originally came from an outbreak in the city of Wuhan, China in December 2019 which later became a pandemic that occurred in many countries around the world. This disease has caused the government to give a regional lockdown status to give students the status of \"at home\" for students to enforce online or online lectures, this has caused various sentiments given by students in responding to online lectures via social media twitter. For sentiment analysis, the researcher applies the nave Bayes algorithm and support vector machine (SVM) with the performance results obtained on the Bayes algorithm with an accuracy of 81.20%, time 9.00 seconds, recall 79.60% and precision 79.40% while for the SVM algorithm get an accuracy value of 85%, time 31.60 seconds, recall 84% and precision 83.60%, the performance results are obtained in the 1st iteration for nave Bayes and the 423th iteration for the SVM algorithm \n \n \n ","PeriodicalId":292404,"journal":{"name":"Jurnal Komtika (Komputasi dan Informatika)","volume":"36 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Komtika (Komputasi dan Informatika)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.31603/KOMTIKA.V5I1.5189","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 7

Abstract

The World Health Organization (WHO) COVID-19 is an infectious disease caused by the Coronavirus which originally came from an outbreak in the city of Wuhan, China in December 2019 which later became a pandemic that occurred in many countries around the world. This disease has caused the government to give a regional lockdown status to give students the status of "at home" for students to enforce online or online lectures, this has caused various sentiments given by students in responding to online lectures via social media twitter. For sentiment analysis, the researcher applies the nave Bayes algorithm and support vector machine (SVM) with the performance results obtained on the Bayes algorithm with an accuracy of 81.20%, time 9.00 seconds, recall 79.60% and precision 79.40% while for the SVM algorithm get an accuracy value of 85%, time 31.60 seconds, recall 84% and precision 83.60%, the performance results are obtained in the 1st iteration for nave Bayes and the 423th iteration for the SVM algorithm  
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
世界卫生组织(世卫组织)2019冠状病毒病是一种由冠状病毒引起的传染病,最初起源于2019年12月在中国武汉市爆发的疫情,后来演变成在世界许多国家发生的大流行。由于新冠肺炎疫情,政府下达了地区封锁令,让学生们有“在家”的状态,以便学生们在网上或网上讲课,这引起了学生们在社交媒体推特上对网上讲课的各种反应。对于情感分析,研究者使用了朴素贝叶斯算法和支持向量机(SVM),在贝叶斯算法上得到的性能结果为准确率81.20%,时间9.00秒,召回率79.60%,精度79.40%,而在SVM算法上得到的性能结果为准确率85%,时间31.60秒,召回率84%,精度83.60%,朴素贝叶斯算法在第一次迭代得到性能结果,SVM算法在第423次迭代得到性能结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analisa Pengukuran Tingkat Kepuasan Pengguna Aplikasi Daytrans Dengan Kerangka Kerja Pieces Framework Analysis of User Experience on the MyPertamina Application using User Experience Questionnaire Method Monitoring dan Klasifikasi Kualitas Air Kolam Ikan Gurami Berbasis Internet of Things Menggunakan Metode Naive Bayes Evaluation of Maturity Level and Recommendations for Improvement of Software Testing Process Based on Test Maturity Model Integration (TMMi): A Case Study Analisis dan Penanganan Insiden Siber SQL Injection Menggunakan Kerangka NIST SP 800-61R2 dan Algoritma Klusterisasi K-Means
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1