A Study on the Chemo-Mechanical Alteration of Cement in CO2 Storage Sites

Mohammadreza Bagheri, S. Shariatipour, E. Ganjian
{"title":"A Study on the Chemo-Mechanical Alteration of Cement in CO2 Storage Sites","authors":"Mohammadreza Bagheri, S. Shariatipour, E. Ganjian","doi":"10.2118/195520-MS","DOIUrl":null,"url":null,"abstract":"\n The fluid pressure, the stress due to the column of the cement in the annulus of oil and gas wells, and the radial pressure exerted on the cement sheath from the surrounding geological layers all affect the integrity of the cement sheath. This paper studies the impact of CO2-bearing fluids, coupled with the geomechanical alterations within the cement matrix on its integrity. These geochemical and geomechanical alterations within the cement matrix have been coupled to determine the cement lifespan. Two main scenarios including radial cracking and radial compaction, were assumed in order to investigate the behaviour of the cement matrix exposed to CO2-bearing fluids over long periods. If the radial pressure from the surrounding rocks on the cement matrix overcomes the strength of the degraded layers within the cement matrix, cement failure can be postponed, while on the other hand, high vertical stress on the cement matrix in the absence of a proper radial pressure can lead to a reduction in the cement lifespan. The radial cracking process generates local areas of high permeability around the outer face of the cement sheath. Our simulation results show at the shallower depths the cement matrices resist CO2-bearing fluids more and this delays exponentially the travel time of CO2-bearing fluids towards the Earth's surface. This is based on the evolution of CO2 gas from the aqueous phase due to the reduction in the fluid pressure at shallower depths, and consumption of CO2 in the reactions which occur at the deeper locations.","PeriodicalId":103248,"journal":{"name":"Day 4 Thu, June 06, 2019","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 4 Thu, June 06, 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/195520-MS","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

Abstract

The fluid pressure, the stress due to the column of the cement in the annulus of oil and gas wells, and the radial pressure exerted on the cement sheath from the surrounding geological layers all affect the integrity of the cement sheath. This paper studies the impact of CO2-bearing fluids, coupled with the geomechanical alterations within the cement matrix on its integrity. These geochemical and geomechanical alterations within the cement matrix have been coupled to determine the cement lifespan. Two main scenarios including radial cracking and radial compaction, were assumed in order to investigate the behaviour of the cement matrix exposed to CO2-bearing fluids over long periods. If the radial pressure from the surrounding rocks on the cement matrix overcomes the strength of the degraded layers within the cement matrix, cement failure can be postponed, while on the other hand, high vertical stress on the cement matrix in the absence of a proper radial pressure can lead to a reduction in the cement lifespan. The radial cracking process generates local areas of high permeability around the outer face of the cement sheath. Our simulation results show at the shallower depths the cement matrices resist CO2-bearing fluids more and this delays exponentially the travel time of CO2-bearing fluids towards the Earth's surface. This is based on the evolution of CO2 gas from the aqueous phase due to the reduction in the fluid pressure at shallower depths, and consumption of CO2 in the reactions which occur at the deeper locations.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
二氧化碳储存区水泥化学-力学变化研究
油气井环空的流体压力、水泥柱所产生的应力以及周围地质层对水泥环的径向压力都会影响水泥环的完整性。本文研究了含二氧化碳流体以及水泥基质内部的地质力学变化对其完整性的影响。水泥基质中的这些地球化学和地质力学变化被耦合起来,以确定水泥的使用寿命。为了研究水泥基质长期暴露于含二氧化碳流体中的行为,假设了两种主要情况,包括径向开裂和径向压实。如果来自水泥基体上围岩的径向压力克服了水泥基体内退化层的强度,则可以推迟水泥的破坏,而另一方面,在没有适当径向压力的情况下,水泥基体上的高垂直应力可能导致水泥寿命缩短。径向开裂过程在水泥护套外表面周围产生局部高渗透区域。我们的模拟结果显示,在较浅的深度,水泥基质对含二氧化碳流体的抵抗能力更强,这使得含二氧化碳流体向地表移动的时间呈指数级延迟。这是基于水相中CO2气体的演化,这是由于较浅深度流体压力的降低,以及在较深位置发生的反应中CO2的消耗。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Investigation of Pore Structure and Fractal Characteristics in an Organic-Rich Shale Gas-Condensate Reservoir from the Duvernay Formation Can Unconventional Completion Systems Revolutionise EGS? A Critical Technology Review Evaluation of CO2-EOR Performance and Storage Mechanisms in an Active Partially Depleted Oil Reservoir Novel Method For Mitigating Injectivity Issues During Polymer Flooding at High Salinity Conditions Formation Induced Well Deformation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1