Machine Learning based Discrimination for Excited State Promoted Readout

Utkarsh Azad, Helena Zhang
{"title":"Machine Learning based Discrimination for Excited State Promoted Readout","authors":"Utkarsh Azad, Helena Zhang","doi":"10.1109/SEC54971.2022.00053","DOIUrl":null,"url":null,"abstract":"A limiting factor for readout fidelity for superconducting qubits is the relaxation of the qubit to the ground state before the time needed for the resonator to reach its final target state. A technique known as excited state promoted (ESP) readout was proposed to reduce this effect and further improve the readout contrast on superconducting hardware. In this work, we use readout data from five-qubit IBMQ devices to measure the effectiveness of using deep neural networks, like feedforward neural networks, and various classification algorithms, like k-nearest neighbors, decision trees, and Gaussian naive Bayes, for single-qubit and multi-qubit discrimination. These methods were compared to standardly used linear and quadratic discriminant analysis algorithms based on their qubit-state-assignment fidelity performance, robustness to readout crosstalk, and training time.","PeriodicalId":364062,"journal":{"name":"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)","volume":"61 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE/ACM 7th Symposium on Edge Computing (SEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEC54971.2022.00053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

A limiting factor for readout fidelity for superconducting qubits is the relaxation of the qubit to the ground state before the time needed for the resonator to reach its final target state. A technique known as excited state promoted (ESP) readout was proposed to reduce this effect and further improve the readout contrast on superconducting hardware. In this work, we use readout data from five-qubit IBMQ devices to measure the effectiveness of using deep neural networks, like feedforward neural networks, and various classification algorithms, like k-nearest neighbors, decision trees, and Gaussian naive Bayes, for single-qubit and multi-qubit discrimination. These methods were compared to standardly used linear and quadratic discriminant analysis algorithms based on their qubit-state-assignment fidelity performance, robustness to readout crosstalk, and training time.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于机器学习的激发态提升读出判别
超导量子位读出保真度的一个限制因素是,在谐振器达到最终目标状态所需的时间之前,量子位松弛到基态。提出了一种称为激发态促进(ESP)读出的技术,以减少这种影响,并进一步提高超导硬件上读出的对比度。在这项工作中,我们使用来自五量子位IBMQ设备的读出数据来测量使用深度神经网络(如前馈神经网络)和各种分类算法(如k近邻、决策树和高斯朴素贝叶斯)进行单量子位和多量子位区分的有效性。基于量子比特状态分配保真度性能、对读出串扰的鲁棒性和训练时间,将这些方法与标准使用的线性和二次判别分析算法进行了比较。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Opportunities for Optimizing the Container Runtime Poster: EdgeShell - A language for composing edge applications Quantum Text Encoding for Classification Tasks Scaling Vehicle Routing Problem Solvers with QUBO-based Specialized Hardware FLiCR: A Fast and Lightweight LiDAR Point Cloud Compression Based on Lossy RI
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1