{"title":"Character Normalization Methods Using Moments of Gradient Features and Normalization Cooperated Feature Extraction","authors":"Toshinori Miyoshi, T. Nagasaki, Hiroshi Shinjo","doi":"10.1109/CCPR.2009.5343977","DOIUrl":null,"url":null,"abstract":"Normalization is a particular important preprocessing operation, and has a large effect on the performance of character recognition. One of the purposes of normalization is to regulate the size, position, and shape of character images so as to reduce within-class shape variations. Among various methods of normalization, moment-based normalizations are known to greatly improve the performance of character recognition. However, conventional moment-based normalization methods are susceptible to the variations of stroke length and/or thickness. In order to alleviate this problem, we propose moment normalization methods that use the moments of character contours instead of character images themselves to estimate the transformation parameters. Our experiments show that the proposed methods are effective particularly for printed character recognition.","PeriodicalId":354468,"journal":{"name":"2009 Chinese Conference on Pattern Recognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Chinese Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCPR.2009.5343977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5
Abstract
Normalization is a particular important preprocessing operation, and has a large effect on the performance of character recognition. One of the purposes of normalization is to regulate the size, position, and shape of character images so as to reduce within-class shape variations. Among various methods of normalization, moment-based normalizations are known to greatly improve the performance of character recognition. However, conventional moment-based normalization methods are susceptible to the variations of stroke length and/or thickness. In order to alleviate this problem, we propose moment normalization methods that use the moments of character contours instead of character images themselves to estimate the transformation parameters. Our experiments show that the proposed methods are effective particularly for printed character recognition.