Cardiotocography analysis based on segmentation-based fractal texture decomposition and extreme learning machine

Zafer Cömert, A. F. Kocamaz
{"title":"Cardiotocography analysis based on segmentation-based fractal texture decomposition and extreme learning machine","authors":"Zafer Cömert, A. F. Kocamaz","doi":"10.1109/SIU.2017.7960397","DOIUrl":null,"url":null,"abstract":"Fetal heart rate (FHR) has notable patterns for the assessment of fetal physiology and typical stress conditions. FHR signals are obtained using cardiotocography (CTG) devices also providing uterine activities simultaneously and fetal movements. In this study, a total of 88 records consisting of 44 normal and 44 hypoxic fetuses instances obtained from publicly available CTU-UHB database have been considered. The basic morphological features supporting clinical diagnosis, the powers of 4 different spectral bands and Lempel Ziv complexity have been used to define FHR signals. Also, it has been proposed to use segmentation-based fractal texture analysis (SFTA) to identify the signals more accurately. The obtained feature set was applied as the input to extreme learning machine (ELM) with 5-fold cross-validation method. According to experimental results, 79.65% of accuracy, 79.92% of specificity, and 80.95% of sensitivity were obtained. It was observed that the SFTA offers useful statistical features to distinguish normal and hypoxic fetuses.","PeriodicalId":217576,"journal":{"name":"2017 25th Signal Processing and Communications Applications Conference (SIU)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 25th Signal Processing and Communications Applications Conference (SIU)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SIU.2017.7960397","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

Abstract

Fetal heart rate (FHR) has notable patterns for the assessment of fetal physiology and typical stress conditions. FHR signals are obtained using cardiotocography (CTG) devices also providing uterine activities simultaneously and fetal movements. In this study, a total of 88 records consisting of 44 normal and 44 hypoxic fetuses instances obtained from publicly available CTU-UHB database have been considered. The basic morphological features supporting clinical diagnosis, the powers of 4 different spectral bands and Lempel Ziv complexity have been used to define FHR signals. Also, it has been proposed to use segmentation-based fractal texture analysis (SFTA) to identify the signals more accurately. The obtained feature set was applied as the input to extreme learning machine (ELM) with 5-fold cross-validation method. According to experimental results, 79.65% of accuracy, 79.92% of specificity, and 80.95% of sensitivity were obtained. It was observed that the SFTA offers useful statistical features to distinguish normal and hypoxic fetuses.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于分形纹理分解和极限学习机的心脏学分析
胎儿心率(FHR)有显著的模式评估胎儿生理和典型的应激条件。FHR信号是通过心脏造影(CTG)装置获得的,同时也提供子宫活动和胎儿运动。在本研究中,共有88例记录,包括44例正常胎儿和44例缺氧胎儿,这些记录来自公开的CTU-UHB数据库。利用支持临床诊断的基本形态学特征、4个不同光谱带的幂和Lempel Ziv复杂度来定义FHR信号。此外,还提出了基于分割的分形纹理分析(SFTA)来更准确地识别信号。将得到的特征集作为极限学习机(ELM)的输入,采用五重交叉验证方法。实验结果表明,该方法准确率为79.65%,特异性为79.92%,灵敏度为80.95%。观察到SFTA提供了有用的统计特征来区分正常和缺氧胎儿。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A secure wireless home automation system Error performance analysis of multi-hop space shift keying with transmit antenna selection Voice cloud platform for medical applications A comparison among interference approximation methods for OFDM/OQAM A fast and robust automatic object detection algorithm to detect small objects in infrared images
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1