Worst-case noise prediction using power network impedance profile

Xiang Zhang, Yang Liu, Chung-Kuan Cheng
{"title":"Worst-case noise prediction using power network impedance profile","authors":"Xiang Zhang, Yang Liu, Chung-Kuan Cheng","doi":"10.1109/SLIP.2013.6681681","DOIUrl":null,"url":null,"abstract":"We propose a novel method to predict the worst-case noise using power distribution network impedance profile. Traditional target impedance method lacks of accuracy to estimate the worst-case noise. The convolution of impulse responses method can provide accurate noise prediction but cannot provide intuitive guidelines for the optimization. In this paper, we first analyze the ratio of the time-domain maximum output voltage noise to the multiplication of target impedance when time-domain maximum input current is confined to one. Particularly, for a typical PDN with two-stage or three-stage RLC tanks, the maximum ratio can be 2.09 and 2.72 respectively. We then propose our prediction in a standard RLC tank. We further extend it to analyze real PDN structures with multistage RLC tanks. Our results show that the proposed method can intuitively and accurately estimate the worst-case noise and provide straightforward design guidelines to improve PDN performance. For a typical lumped PDN with two-stage RLC tanks, the estimation error is within ±6%.","PeriodicalId":385305,"journal":{"name":"2013 ACM/IEEE International Workshop on System Level Interconnect Prediction (SLIP)","volume":"16 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 ACM/IEEE International Workshop on System Level Interconnect Prediction (SLIP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SLIP.2013.6681681","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

Abstract

We propose a novel method to predict the worst-case noise using power distribution network impedance profile. Traditional target impedance method lacks of accuracy to estimate the worst-case noise. The convolution of impulse responses method can provide accurate noise prediction but cannot provide intuitive guidelines for the optimization. In this paper, we first analyze the ratio of the time-domain maximum output voltage noise to the multiplication of target impedance when time-domain maximum input current is confined to one. Particularly, for a typical PDN with two-stage or three-stage RLC tanks, the maximum ratio can be 2.09 and 2.72 respectively. We then propose our prediction in a standard RLC tank. We further extend it to analyze real PDN structures with multistage RLC tanks. Our results show that the proposed method can intuitively and accurately estimate the worst-case noise and provide straightforward design guidelines to improve PDN performance. For a typical lumped PDN with two-stage RLC tanks, the estimation error is within ±6%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于电网阻抗曲线的最坏情况噪声预测
提出了一种利用配电网阻抗曲线预测最坏情况噪声的新方法。传统的目标阻抗法在估计最坏情况噪声时缺乏准确性。脉冲响应卷积法可以提供准确的噪声预测,但不能提供直观的优化指导。本文首先分析了当时域最大输入电流为1时,时域最大输出电压噪声与目标阻抗乘法的比值。特别是,对于典型的两级或三级RLC罐的PDN,最大比值分别为2.09和2.72。然后,我们在标准RLC槽中提出我们的预测。我们进一步将其推广到实际的多级RLC储罐PDN结构的分析。结果表明,该方法可以直观准确地估计最坏情况下的噪声,为提高PDN性能提供了简单的设计指导。对于典型的两级RLC槽集总PDN,估计误差在±6%以内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Chip-scale physical interconnect models (Tutorial) IBM CMOS compatible photonics and traveling wave electro-optic modulator design Channel routing for integrated optics Wireless on Networks-on-Chip High-dimensional metamodeling for prediction of clock tree synthesis outcomes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1