Opinion Mining in Facebook Regional Discussion Groups: A Case Study to Identify Health, Education and Security Posts in Discussion Groups

Leonardo Augusto Sápiras, Rodrigo Antônio Weber
{"title":"Opinion Mining in Facebook Regional Discussion Groups: A Case Study to Identify Health, Education and Security Posts in Discussion Groups","authors":"Leonardo Augusto Sápiras, Rodrigo Antônio Weber","doi":"10.1145/3330204.3330221","DOIUrl":null,"url":null,"abstract":"This paper presents the results a case study that apply opinion mining about health, security and education, using as source discussions in Facebook regional groups. The method used is quite different from other researches because it propose an approach to identify regional posts. Five different supervisioned learning algorithms was applied during the classification step. The results show that region's posts can be identified with this new approach.","PeriodicalId":348938,"journal":{"name":"Proceedings of the XV Brazilian Symposium on Information Systems","volume":"18 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the XV Brazilian Symposium on Information Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3330204.3330221","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents the results a case study that apply opinion mining about health, security and education, using as source discussions in Facebook regional groups. The method used is quite different from other researches because it propose an approach to identify regional posts. Five different supervisioned learning algorithms was applied during the classification step. The results show that region's posts can be identified with this new approach.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Facebook区域讨论组的意见挖掘:在讨论组中识别健康、教育和安全职位的案例研究
本文介绍了一个案例研究的结果,该研究应用了关于健康、安全和教育的意见挖掘,并使用了Facebook区域小组中的源讨论。所使用的方法与其他研究有很大不同,因为它提出了一种确定区域员额的方法。在分类步骤中使用了五种不同的监督学习算法。结果表明,该方法可以有效地识别出地区的岗位。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Outer-Tuning: an integration of rules, ontology and RDBMS Market Prediction in Criptocurrency: A Systematic Literature Mapping Machine learning techniques for code smells detection: an empirical experiment on a highly imbalanced setup Kairós LifeReview: A model for monitoring people with anxiety disorder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1