Clustering WSDL Documents to Bootstrap the Discovery of Web Services

Khalid Elgazzar, A. Hassan, Patrick Martin
{"title":"Clustering WSDL Documents to Bootstrap the Discovery of Web Services","authors":"Khalid Elgazzar, A. Hassan, Patrick Martin","doi":"10.1109/ICWS.2010.31","DOIUrl":null,"url":null,"abstract":"The increasing use of the Web for everyday tasks is making Web services an essential part of the Internet customer's daily life. Users query the Internet for a required Web service and get back a set of Web services that may or may not satisfy their request. To get the most relevant Web services that fulfill the user's request, the user has to construct the request using the keywords that best describe the user's objective and match correctly with the Web Service name or location. Clustering Web services based on function similarities would greatly boost the ability of Web services search engines to retrieve the most relevant Web services. This paper proposes a novel technique to mine Web Service Description Language (WSDL) documents and cluster them into functionally similar Web service groups. The application of our approach to real Web services description files has shown good performance for clustering Web services based on function similarity, as a predecessor step to retrieving the relevant Web services for a user request by search engines.","PeriodicalId":170573,"journal":{"name":"2010 IEEE International Conference on Web Services","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"255","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2010 IEEE International Conference on Web Services","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICWS.2010.31","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 255

Abstract

The increasing use of the Web for everyday tasks is making Web services an essential part of the Internet customer's daily life. Users query the Internet for a required Web service and get back a set of Web services that may or may not satisfy their request. To get the most relevant Web services that fulfill the user's request, the user has to construct the request using the keywords that best describe the user's objective and match correctly with the Web Service name or location. Clustering Web services based on function similarities would greatly boost the ability of Web services search engines to retrieve the most relevant Web services. This paper proposes a novel technique to mine Web Service Description Language (WSDL) documents and cluster them into functionally similar Web service groups. The application of our approach to real Web services description files has shown good performance for clustering Web services based on function similarity, as a predecessor step to retrieving the relevant Web services for a user request by search engines.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
聚集WSDL文档以引导Web服务的发现
在日常任务中越来越多地使用Web,使得Web服务成为Internet用户日常生活中必不可少的一部分。用户在Internet上查询所需的Web服务,并得到一组可能满足也可能不满足其请求的Web服务。为了获得满足用户请求的最相关的Web服务,用户必须使用最能描述用户目标并与Web服务名称或位置正确匹配的关键字来构建请求。基于功能相似性的Web服务聚类将极大地提高Web服务搜索引擎检索最相关Web服务的能力。本文提出了一种新的技术来挖掘Web服务描述语言(WSDL)文档并将它们聚类到功能相似的Web服务组中。将我们的方法应用于实际的Web服务描述文件显示了基于功能相似性对Web服务进行聚类的良好性能,这是通过搜索引擎检索用户请求的相关Web服务的前一个步骤。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Everett: Providing Branch-Isolation for a Data Evolution Service Message Correlation and Web Service Protocol Mining from Inaccurate Logs QoS Aware Semantic Web Service Composition Approach Considering Pre/Postconditions Benchmarking Vulnerability Detection Tools for Web Services Service Selection Based on Customer Rating of Quality of Service Attributes
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1