Constructing the face of network data

Ertza Warraich, M. Shahbaz
{"title":"Constructing the face of network data","authors":"Ertza Warraich, M. Shahbaz","doi":"10.1145/3472716.3472852","DOIUrl":null,"url":null,"abstract":"Network datasets are an essential part of understanding, managing, and operating modern wide-area, data-center, and cellular networks. They are involved throughout the various stages of network development, from simulations, stress testing, to machine-learning training (for anomaly-based intrusion detection systems) and more. Despite the need, network datasets are rare due to concerns related to information privacy and sensitivity. In this paper, we aim to tackle this challenge and put forth a method, based on Generative Adversarial Networks (GANs), for generating new (and timely) datasets, automatically, that are provisioned as complete raw packets traces of a network and not just feature values.","PeriodicalId":178725,"journal":{"name":"Proceedings of the SIGCOMM '21 Poster and Demo Sessions","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the SIGCOMM '21 Poster and Demo Sessions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3472716.3472852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

Network datasets are an essential part of understanding, managing, and operating modern wide-area, data-center, and cellular networks. They are involved throughout the various stages of network development, from simulations, stress testing, to machine-learning training (for anomaly-based intrusion detection systems) and more. Despite the need, network datasets are rare due to concerns related to information privacy and sensitivity. In this paper, we aim to tackle this challenge and put forth a method, based on Generative Adversarial Networks (GANs), for generating new (and timely) datasets, automatically, that are provisioned as complete raw packets traces of a network and not just feature values.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
构建网络数据面
网络数据集是理解、管理和操作现代广域、数据中心和蜂窝网络的重要组成部分。他们参与了网络开发的各个阶段,从模拟、压力测试到机器学习训练(针对基于异常的入侵检测系统)等等。尽管有这种需求,但由于考虑到信息隐私和敏感性,网络数据集很少。在本文中,我们的目标是解决这一挑战,并提出了一种基于生成对抗网络(gan)的方法,用于自动生成新的(及时的)数据集,这些数据集被提供为网络的完整原始数据包跟踪,而不仅仅是特征值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Blockchain and games: a novel middleware for blockchain-based multiplayer games CAMES SCASys Steal task scheduling from OS: enabling task-network co-schedule for time-critical traffic Cost-effective data analytics across multiple cloud regions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1