Scalable performance bounding under multiple constrained renewable resources

R. Medhat, S. Funk, B. Rountree
{"title":"Scalable performance bounding under multiple constrained renewable resources","authors":"R. Medhat, S. Funk, B. Rountree","doi":"10.1145/3149412.3149422","DOIUrl":null,"url":null,"abstract":"In the age of exascale computing, it is crucial to provide the best possible performance under power constraints. A major part of this optimization is managing power and bandwidth intelligently in a cluster to maximize performance. There are significant improvements in the power efficiency of HPC runtimes, yet little work has explored our ability to determine the theoretical optimal performance under a give power and bandwidth bound. In this paper, we present a scalable model to identify the optimal power and bandwidth distribution such that the makespan of a program is minimized. We utilize the network flow formulation in constructing a linear program that is efficient to solve. We demonstrate the applicability of the model to MPI programs and provide synthetic benchmarks on the performance of the model.","PeriodicalId":102033,"journal":{"name":"Proceedings of the 5th International Workshop on Energy Efficient Supercomputing","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 5th International Workshop on Energy Efficient Supercomputing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3149412.3149422","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

Abstract

In the age of exascale computing, it is crucial to provide the best possible performance under power constraints. A major part of this optimization is managing power and bandwidth intelligently in a cluster to maximize performance. There are significant improvements in the power efficiency of HPC runtimes, yet little work has explored our ability to determine the theoretical optimal performance under a give power and bandwidth bound. In this paper, we present a scalable model to identify the optimal power and bandwidth distribution such that the makespan of a program is minimized. We utilize the network flow formulation in constructing a linear program that is efficient to solve. We demonstrate the applicability of the model to MPI programs and provide synthetic benchmarks on the performance of the model.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
多约束可再生资源下的可伸缩性能边界
在百亿亿次计算时代,在功率限制下提供最佳性能至关重要。这种优化的一个主要部分是智能地管理集群中的功率和带宽,以最大化性能。高性能计算运行时的功率效率有了显著的提高,但在给定功率和带宽限制下确定理论最佳性能的能力却很少有研究。在本文中,我们提出了一个可扩展的模型来确定最优的功率和带宽分布,使程序的最大完工时间最小化。我们利用网络流公式构造了一个有效求解的线性规划。我们证明了该模型对MPI程序的适用性,并提供了模型性能的综合基准。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Performance and Power Characteristics and Optimizations of Hybrid MPI/OpenMP LULESH Miniapps under Various Workloads Improving Energy Efficiency in Memory-constrained Applications Using Core-specific Power Control Execution Phase Prediction Based on Phase Precursors and Locality Adaptive Time-based Encoding for Energy-Efficient Large Cache Architectures PANN: Power Allocation via Neural Networks Dynamic Bounded-Power Allocation in High Performance Computing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1