Safety Gear Compliance Detection Using Data Augmentation-Assisted Transfer Learning in Construction Work Environment

R. Reyes, Rovenson V. Sevilla, Godofredo S. Zapanta, Jovencio V. Merin, R. R. Maaliw, Al Ferrer Santiago
{"title":"Safety Gear Compliance Detection Using Data Augmentation-Assisted Transfer Learning in Construction Work Environment","authors":"R. Reyes, Rovenson V. Sevilla, Godofredo S. Zapanta, Jovencio V. Merin, R. R. Maaliw, Al Ferrer Santiago","doi":"10.1109/CONECCT55679.2022.9865757","DOIUrl":null,"url":null,"abstract":"The study provides a practical solution to the concern of detecting safety gear compliance in construction. This is imperative given that safety in the construction work environment is one of the greatest global concerns, and advancements in deep learning algorithms, especially in the area of machine learning and database management, enable the possibility to address this challenge in construction. This study developed a framework to recognize construction personnel's safety compliance with PPE, which is designed to be implemented into an organization's operational procedure. The Convolutional Neural Network model was constructed by employing machine learning to a basic version of the YOLOv3 deep learning model for the study. On the testing data, the detection method generated an F1 score of 0.9299, with a mean precision-recall rate of 92.99 %. The purpose of this study is to testify to the viability and applicability of machine vision-based methodologies for automated safety-related compliance processes on construction sites.","PeriodicalId":380005,"journal":{"name":"2022 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT)","volume":"17 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CONECCT55679.2022.9865757","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

Abstract

The study provides a practical solution to the concern of detecting safety gear compliance in construction. This is imperative given that safety in the construction work environment is one of the greatest global concerns, and advancements in deep learning algorithms, especially in the area of machine learning and database management, enable the possibility to address this challenge in construction. This study developed a framework to recognize construction personnel's safety compliance with PPE, which is designed to be implemented into an organization's operational procedure. The Convolutional Neural Network model was constructed by employing machine learning to a basic version of the YOLOv3 deep learning model for the study. On the testing data, the detection method generated an F1 score of 0.9299, with a mean precision-recall rate of 92.99 %. The purpose of this study is to testify to the viability and applicability of machine vision-based methodologies for automated safety-related compliance processes on construction sites.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
建筑工作环境中使用数据增强辅助迁移学习的安全装置符合性检测
该研究为工程施工中安全装置符合性检测提供了一种实用的解决方案。鉴于建筑工作环境的安全是全球最关注的问题之一,这是势在必行的,而深度学习算法的进步,特别是在机器学习和数据库管理领域,使解决这一挑战成为可能。本研究开发了一个框架来识别建筑人员对PPE的安全符合性,该框架旨在实施到组织的操作程序中。卷积神经网络模型是利用机器学习对YOLOv3深度学习模型的基础版进行构建的。在测试数据上,检测方法的F1得分为0.9299,平均查全率为92.99%。本研究的目的是证明基于机器视觉的方法在建筑工地自动化安全相关合规过程中的可行性和适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Signal Integrity Issues in FPGA based multi-motor microstepping Drives Organ Bank Based on Blockchain A Novel Deep Architecture for Multi-Task Crowd Analysis Convolutional Neural Network-based ECG Classification on PYNQ-Z2 Framework Improved Electric Vehicle Digital Twin Performance Incorporating Detailed Lithium-ion Battery Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1