Content-Based Collaborative Filtering using Word Embedding: A Case Study on Movie Recommendation

Luong Vuong Nguyen, Tri-Hai Nguyen, Jason J. Jung
{"title":"Content-Based Collaborative Filtering using Word Embedding: A Case Study on Movie Recommendation","authors":"Luong Vuong Nguyen, Tri-Hai Nguyen, Jason J. Jung","doi":"10.1145/3400286.3418253","DOIUrl":null,"url":null,"abstract":"The lack of sufficient ratings will reduce effectively modeling user reference and finding trustworthy similar users in collaborative filtering (CF)-based recommendation systems, also known as a cold-start problem. To solve this problem and improve the efficiency of recommendation systems, we propose a new content-based CF approach based on item similarity. We apply the model in the movie domain and extract features such as genres, directors, actors, and plots of the movies. We use the Jaccard coefficient index to covert the extracted features such as genres, directors, actors to the vectors while the plot feature is converted to the semantic vectors. Then, the similarity of the movies is calculated by soft cosine measure based on vectorized features. We apply the word embedding model (i.e., Word2Vec) for representing the plots feature as semantic vectors instead of using traditional models such as a binary bag of words and a TF-IDF vector space. Experiment results show the superiority of the proposed system in terms of accuracy, precision, recall, and F1 scores in cold-start conditions compared to the baseline systems.","PeriodicalId":326100,"journal":{"name":"Proceedings of the International Conference on Research in Adaptive and Convergent Systems","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the International Conference on Research in Adaptive and Convergent Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3400286.3418253","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 12

Abstract

The lack of sufficient ratings will reduce effectively modeling user reference and finding trustworthy similar users in collaborative filtering (CF)-based recommendation systems, also known as a cold-start problem. To solve this problem and improve the efficiency of recommendation systems, we propose a new content-based CF approach based on item similarity. We apply the model in the movie domain and extract features such as genres, directors, actors, and plots of the movies. We use the Jaccard coefficient index to covert the extracted features such as genres, directors, actors to the vectors while the plot feature is converted to the semantic vectors. Then, the similarity of the movies is calculated by soft cosine measure based on vectorized features. We apply the word embedding model (i.e., Word2Vec) for representing the plots feature as semantic vectors instead of using traditional models such as a binary bag of words and a TF-IDF vector space. Experiment results show the superiority of the proposed system in terms of accuracy, precision, recall, and F1 scores in cold-start conditions compared to the baseline systems.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于内容的基于词嵌入的协同过滤:以电影推荐为例
在基于协同过滤(CF)的推荐系统中,缺乏足够的评分将降低用户参考的有效建模和寻找值得信赖的相似用户,也称为冷启动问题。为了解决这一问题并提高推荐系统的效率,我们提出了一种基于项目相似度的基于内容的CF方法。我们将该模型应用于电影领域,并提取电影的类型、导演、演员和情节等特征。我们使用Jaccard系数指数将提取的类型、导演、演员等特征转换为向量,同时将情节特征转换为语义向量。然后,基于矢量化特征,通过软余弦度量计算电影的相似度;我们使用词嵌入模型(即Word2Vec)来将地块特征表示为语义向量,而不是使用传统的模型,如二进制词包和TF-IDF向量空间。实验结果表明,与基线系统相比,该系统在冷启动条件下的准确率、精密度、召回率和F1分数方面具有优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Extrinsic Depth Camera Calibration Method for Narrow Field of View Color Camera Motion Mode Recognition for Traffic Safety in Campus Guiding Application Failure Prediction by Utilizing Log Analysis: A Systematic Mapping Study PerfNet Road Surface Profiling based on Artificial-Neural Networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1