F. Paissan, Anisha Mohamed Sahabdeen, Alberto Ancilotto, Elisabetta Farella
{"title":"Improving latency performance trade-off in keyword spotting applications at the edge","authors":"F. Paissan, Anisha Mohamed Sahabdeen, Alberto Ancilotto, Elisabetta Farella","doi":"10.1109/IWASI58316.2023.10164328","DOIUrl":null,"url":null,"abstract":"Keyword Spotting (KWS) is handy in many innovative ambient intelligence applications, such as smart cities and home automation. While solving KWS on GP/GPUs has become a trivial task in recent years, many benefits arise when KWS applications run at the edge (e.g., privacy by design and infrastructure sustainability), where resources are limited. Hardware-aware scaling (HAS) is a novel paradigm that brings neural architectures to low-resource platforms. With HAS, it is possible to optimize neural architectures to fit on embedded platforms (e.g., microcontrollers) while maximizing the performance-complexity tradeoff and the performance-latency tradeoff. This paper shows how HAS, coupled with a neural network with appropriate scaling capabilities, can outperform architectures designed with neural architecture search techniques, such as MCUNet. Our method achieves 94.5% accuracy when classifying the 35 keywords in Google Speech Commands v2, with only 70 ms of latency and overall power consumption of less than 10 mJ.","PeriodicalId":261827,"journal":{"name":"2023 9th International Workshop on Advances in Sensors and Interfaces (IWASI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 9th International Workshop on Advances in Sensors and Interfaces (IWASI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWASI58316.2023.10164328","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1
Abstract
Keyword Spotting (KWS) is handy in many innovative ambient intelligence applications, such as smart cities and home automation. While solving KWS on GP/GPUs has become a trivial task in recent years, many benefits arise when KWS applications run at the edge (e.g., privacy by design and infrastructure sustainability), where resources are limited. Hardware-aware scaling (HAS) is a novel paradigm that brings neural architectures to low-resource platforms. With HAS, it is possible to optimize neural architectures to fit on embedded platforms (e.g., microcontrollers) while maximizing the performance-complexity tradeoff and the performance-latency tradeoff. This paper shows how HAS, coupled with a neural network with appropriate scaling capabilities, can outperform architectures designed with neural architecture search techniques, such as MCUNet. Our method achieves 94.5% accuracy when classifying the 35 keywords in Google Speech Commands v2, with only 70 ms of latency and overall power consumption of less than 10 mJ.