On the Achievable Energy Efficiency in Dynamic Licensed Shared Access

S. Onidare, K. Navaie, Q. Ni
{"title":"On the Achievable Energy Efficiency in Dynamic Licensed Shared Access","authors":"S. Onidare, K. Navaie, Q. Ni","doi":"10.1109/GCWkshps45667.2019.9024483","DOIUrl":null,"url":null,"abstract":"The licensed shared access (LSA) promises to be a viable alternative solution to the well-reported spectrum underutilization. The higher priority of the incumbent in the spectrum sharing arrangement implies that the licensee's access to the spectrum can be revoked or restricted at any time. This has been observed to result in degradation of some critical performance metrics of the latter. In this paper, we investigate the effect of this on the energy efficiency (EE) of an LSA sharing between an airport incumbent and a mobile network operator licensee. We formulate expressions for the operating transmit power of the licensee when its spectrum access right is revoked/restricted in both the uplink and downlink transmission directions. We then propose a power allocation scheme that maximizes the EE of the licensee during these time intervals in which the licensee operating transmit power is constrained by the incumbent system's utilization of the spectrum. We further provide analytical discussions on how the achievable EE during this time compares to when the licensee's access to the spectrum is free of any restriction from the incumbent. The results obtained show that while the EE suffers degradation in the uplink when the licensee spectrum access right is restricted, there is no noticeable difference in the achievable EE in the downlink direction. Furthermore, in the uplink, the optimal power allocation provides better EE even than when the spectrum is free especially at lower transmit power and channel number, while in the downlink, the optimal power allocation EE is consistently better than the free spectrum EE.","PeriodicalId":210825,"journal":{"name":"2019 IEEE Globecom Workshops (GC Wkshps)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 IEEE Globecom Workshops (GC Wkshps)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/GCWkshps45667.2019.9024483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

The licensed shared access (LSA) promises to be a viable alternative solution to the well-reported spectrum underutilization. The higher priority of the incumbent in the spectrum sharing arrangement implies that the licensee's access to the spectrum can be revoked or restricted at any time. This has been observed to result in degradation of some critical performance metrics of the latter. In this paper, we investigate the effect of this on the energy efficiency (EE) of an LSA sharing between an airport incumbent and a mobile network operator licensee. We formulate expressions for the operating transmit power of the licensee when its spectrum access right is revoked/restricted in both the uplink and downlink transmission directions. We then propose a power allocation scheme that maximizes the EE of the licensee during these time intervals in which the licensee operating transmit power is constrained by the incumbent system's utilization of the spectrum. We further provide analytical discussions on how the achievable EE during this time compares to when the licensee's access to the spectrum is free of any restriction from the incumbent. The results obtained show that while the EE suffers degradation in the uplink when the licensee spectrum access right is restricted, there is no noticeable difference in the achievable EE in the downlink direction. Furthermore, in the uplink, the optimal power allocation provides better EE even than when the spectrum is free especially at lower transmit power and channel number, while in the downlink, the optimal power allocation EE is consistently better than the free spectrum EE.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
论动态许可共享访问中可实现的能源效率
许可共享访问(LSA)有望成为一种可行的替代解决方案,以解决众所周知的频谱利用率不足问题。频谱共享安排中在职者的优先级较高,意味着持牌人对频谱的访问可随时撤销或限制。据观察,这会导致后者的一些关键性能指标下降。在本文中,我们研究了这对机场运营商和移动网络运营商被许可方之间LSA共享的能效(EE)的影响。当被许可人的频谱接入权在上行和下行传输方向上被撤销/限制时,我们给出被许可人的运行发射功率表达式。然后,我们提出了一种功率分配方案,该方案在这些时间间隔内最大化被许可方的EE,在这些时间间隔内,被许可方操作的发射功率受到现有系统对频谱的利用的限制。我们进一步分析讨论了在此期间可实现的EE与被许可方对频谱的访问不受现有运营商的任何限制时的EE相比如何。结果表明,当被许可频谱接入权限受到限制时,上行方向的EE会出现下降,而下行方向的可实现EE没有明显差异。此外,在上行链路中,特别是在发射功率和信道数较低时,最优功率分配提供的EE优于空闲频谱时,而在下行链路中,最优功率分配EE始终优于空闲频谱EE。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Timeliness Analysis of Service-Driven Collaborative Mobile Edge Computing in UAV Swarm 5G Enabled Mobile Healthcare for Ambulances Secure Quantized Sequential Detection in the Internet of Things with Eavesdroppers A Novel Indoor Coverage Measurement Scheme Based on FRFT and Gaussian Process Regression A Data-Driven Deep Neural Network Pruning Approach Towards Efficient Digital Signal Modulation Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1